Skip to main content
Log in

Facile one pot synthesis of strong epoxy/agar hybrid hydrogels

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Epoxy biopolymer hybrid hydrogels have excellent potential for load bearing applications, despite limited studies in this area. In this paper, a facile one-pot synthesis of epoxy/agar hybrid hydrogels has been reported. Infrared spectroscopy, rheometry, thermal, mechanical properties and immersion studies have been reported. An advantage of the hydrogels synthesized here is that they can be prepared in a shorter timeframe than conventional epoxy biopolymer hydrogels. Diethylene triamine was used as the cross-linker which induces gelation within five minutes at 90 °C. The mechanical properties of epoxy hydrogels prepared using diethylene triamine are found to be comparable to that of hydrogels prepared using long chain amine terminated poloxamers. The compressive toughness of the hybrid hydrogels increases by ~380% via the addition of 3 wt% agar in comparison with epoxy hydrogels. These hybrid hydrogels are elastic and biodegradable.

Epoxy agar hybrid hydrogel with enhanced compressive toughness was prepared using a combination of covalent and physical bonding. The hybrid hydrogels could be produced in very short time compared to conventional epoxy based hydrogels and show potential to be applied in load bearing applications

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 1

Similar content being viewed by others

References

  1. Li Y, Rodrigues J, Tomas H (2012). Chem Soc Rev 41:2193–2221

    Article  CAS  Google Scholar 

  2. Gupta KVP, Garg S (2002). Drug Discov Today 7:569–579

    Article  CAS  Google Scholar 

  3. Nicolsonm PC, Vogt J (2001). Biomaterials 22:3273–3283

    Article  Google Scholar 

  4. (2009) Calvert. Adv Mater 21:743–756

  5. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003). Adv Mater 15:1155–1158

    Article  CAS  Google Scholar 

  6. Osada Y, Okuzaki H, Hori H (1992). Nature 355:242–244

    Article  CAS  Google Scholar 

  7. Osada Y, Gong J-P (1998). Adv Mater 10:827–837

    Article  CAS  Google Scholar 

  8. Shin MK, Spinks GM, Shin SR, Kim SI, Kim SJ (2009). Adv Mater 21:1712–1715

    Article  CAS  Google Scholar 

  9. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000). Nature 404:588–590

    Article  CAS  Google Scholar 

  10. Satarkar NS, Zhang W, Eitel RE, Hilt JZ (2009). Lab Chip 9:1773–1779

    Article  CAS  Google Scholar 

  11. Tanaka Y, Gong JP, Osada Y (2005). Prog Polym Sci 30:1–9

    Article  CAS  Google Scholar 

  12. Okumura Y, Ito K (2001). Adv Mater 13:485–487

    Article  CAS  Google Scholar 

  13. Haraguchi K, Takehisa T (2002). Adv Mater 14:1120–1124

    Article  CAS  Google Scholar 

  14. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung U-i (2008). Macromolecules 41:5379–5384

    Article  CAS  Google Scholar 

  15. Haraguchi K (2007). Curr Opinion Solid State Mater Sci 11:47–54

    Article  CAS  Google Scholar 

  16. Huang T, Xu HG, Jiao KX, Zhu LP, Brown HR, Wang HL (2007). Adv Mater 19:1622–1626

    Article  CAS  Google Scholar 

  17. Haque MA, Kurokawa T, Kamita G, Gong JP (2011). Macromolecules 44:8916–8924

    Article  CAS  Google Scholar 

  18. Dragan ES (2014). Chem Eng J 243:572–590

    Article  CAS  Google Scholar 

  19. Bakarich SE, Pidcock GC, Balding P, Stevens L, Calvert P, in het Panhuis M (2012). Soft Matter 8:9985–9988

    Article  CAS  Google Scholar 

  20. Sun J-Y, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012). Nature 489:133–136

    Article  CAS  Google Scholar 

  21. Stevens L, Calvert P, Wallace GG, in het Panhuis M (2013). Soft Matter 9:3009–3012

    Article  CAS  Google Scholar 

  22. K. D. B. Berkay Ozcelika, Anton Blencowea, Mark Daniellb, Geoff W. Stevensa, Greg G. Qiao, 2013,, 9, 6594–6605

  23. Xiong J-Y, Narayanan J, Liu X-Y, Chong TK, Chen SB, Chung T-S (2005). J Phys Chem B 109:5638–5643

    Article  CAS  Google Scholar 

  24. Cayre OJ, Chang ST, Velev OD (2007). J Am Chem Soc 129:10801–10806

    Article  CAS  Google Scholar 

  25. Saris DB, Mukherjee N, Berglund LJ, Schultz FM, An KN, O'Driscoll SW (2000). Tissue Eng 6:531–537

    Article  CAS  Google Scholar 

  26. Chen Q, Zhu L, Zhao C, Wang Q, Zheng J (2013). Adv Mater 25:4171–4176

    Article  CAS  Google Scholar 

  27. Bakarich SE, in het Panhuis M, Beirne S, Wallace GG, Spinks GM (2013). J Mater Chem B 1:4939–4946

    Article  CAS  Google Scholar 

  28. Moura MJ, Faneca H, Lima MP, Gil MH, Figueiredo MM (2011). Biomacromolecules 12:3275–3284

    Article  CAS  Google Scholar 

  29. Krakovsky I, Shikata T, Hasegawa R (2013). J Phys Chem B 117:14122–14128

    Article  CAS  Google Scholar 

  30. Szekély N, Krakovský I (2009). Eur Polym J 45:1385–1390

    Article  Google Scholar 

  31. Krakovský I, Székely NK (2011). Eur Polym J 47:2177–2188

    Article  Google Scholar 

  32. Krakovský I, Pleštil J, Almásy L (2006). Polymer 47:218–226

    Article  Google Scholar 

  33. Pourjavadi A, Farhadpour B, Seidi F (2009). J Polym Res 16:655–665

    Article  CAS  Google Scholar 

  34. Rossi F, Perale G, Storti G, Masi M (2012). J Appl Polym Sci 123:2211–2221

    Article  CAS  Google Scholar 

  35. Hao J, Weiss RA (2011). Macromolecules 44:9390–9398

    Article  CAS  Google Scholar 

  36. Abdurrahmanoglu S, Okay O (2008). Macromolecules 41:7759–7761

    Article  CAS  Google Scholar 

  37. Okay O, Oppermann W (2007). Macromolecules 40:3378–3387

    Article  CAS  Google Scholar 

  38. Fan J, Shi Z, Lian M, Li H, Yin J (2013). J Mater Chem A 1:7433–7443

    Article  CAS  Google Scholar 

  39. Sui K, Gao S, Wu W, Xia Y (2010). J Polym Sci A Polym Chem 48:3145–3151

    Article  CAS  Google Scholar 

  40. Abdurrahmanoglu S, Can V, Okay O (2009). Polymer

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masihullah Jabarulla Khan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(MP4 4.43 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabarulla Khan, M., Guo, Q. & Varley, R. Facile one pot synthesis of strong epoxy/agar hybrid hydrogels. J Polym Res 26, 291 (2019). https://doi.org/10.1007/s10965-019-1912-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1912-4

Keywords

Navigation