Skip to main content
Log in

Preparation of pH- and salinity-responsive cellulose copolymer in ionic liquid

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel biodegradable pH- and salinity-responsive cellulose copolymer was prepared by grafting 2-(Dimethylamino) ethylmethacrylate (DMAEMA) onto bagasse cellulose in ionic liquid. The grafting polymerization was achieved in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) under microwave irradiation. Copolymers were then characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and thermo gravimetric analysis measurements. The results revealed that polymer chains had been successfully bonded to the cellulose backbone. Furthermore, the self-assembly of cellulose-g-DMAEMA copolymers at various salt concentrations and pH solution were investigated by means of swelling behavior measurement. It indicated that the copolymers presented dual pH and salinity-responsive properties. The synthetic strategy showed great potential in the modification of other cellulosic biomass to afford new biomaterials with desired properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lindqvist J, Nystrom D, Ostmark E et al (2008) Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP. Biomacromolecules 9:2139–2145

    Article  CAS  Google Scholar 

  2. Routray C, Tosh B (2012) Controlled grafting of MMA onto cellulose and cellulose acetate. Cellulose 19:2115–2139

    Article  CAS  Google Scholar 

  3. Kamel S, Ali N, Jahangir K et al (2008) Pharmaceutical significance of cellulose: a review. Express Polym Lett 2:758–778

    Article  CAS  Google Scholar 

  4. Swatloski RP, Spear SK, Holbrey JD et al (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  5. Lin CX, Zhan HY, Liu MH et al (2010) Rapid homogeneous preparation of cellulose graft copolymer in BMIMCL under microwave irradiation. J Appl Polym Sci 118:399–404

    Article  CAS  Google Scholar 

  6. Chang G, Wei XY, Li JH et al (2012) Homogeneous modification of sugarcane bagasse cellulose with 2-(Dimethylamino)ethylmethacrylate in ionic liquid under microwave irradiation. Adv Mater Res 550–553:1419–1423

    Article  Google Scholar 

  7. Guo YZ, Liu QL, Chen H et al (2013) Direct grafting modification of pulp in ionic liquids and self-assembly behavior of the graft copolymers. Cellulose 20:873–884

    Article  CAS  Google Scholar 

  8. Ma L, Kang HL, Liu RG et al (2010) Smart assembly behaviors of hydroxypropylcellulose-graft-poly(4-vinyl pyridine) copolymers in aqueous solution by thermo and pH stimuli. Langmuir 26:18519–18525

    Article  CAS  Google Scholar 

  9. Qu TH, Wang AR, Yuan JF et al (2009) Preparation of an amphiphilic triblock copolymer with pH- and thermo-responsiveness and self-assembled micelles applied to drug release. J Colloid Interface Sci 336:865–871

    Article  CAS  Google Scholar 

  10. Chang CY, He M, Zhou JP et al (2011) Swelling behaviors of pH- and salt-responsive cellulose-based hydrogels. Macromolecules 44:1642–1648

    Article  CAS  Google Scholar 

  11. Wei XY, Qi L, Yang GL et al (2009) Preparation and characterization of monolithic column by grafting pH-responsive polymer. Talanta 79:739–745

    Article  CAS  Google Scholar 

  12. Gu LN, Feng C, Yang D et al (2009) PPEGMEA-g-PDEAEMA: double hydrophilic double-grafted copolymer stimuli-responsive to both pH and salinity. J Polym Sci Polym Chem 47:3142–3153

    CAS  Google Scholar 

  13. Sui XF, Yuan JY, Zhou M et al (2008) Synthesis of cellulose-graft-poly(N, N-dimethylamino-2-ethyl methacrylate) copolymers via homogeneous ATRP and their aggregates in aqueous media. Biomacromolecules 9:2615–2620

    Article  CAS  Google Scholar 

  14. Yan Q, Yuan JY, Zhang FB et al (2009) Cellulose-based dual graft molecular brushes as potential drug nanocarriers: stimulus-responsive micelles, self-assembled phase transition behavior, and tunable crystalline morphologies. Biomacromolecules 10:2033–2042

    Article  CAS  Google Scholar 

  15. Bhut BV, Husson SM (2009) Dramatic performance improvement of weak anion-exchange membranes for chromatographic bioseparations. J Membr Sci 337:215–223

    Article  CAS  Google Scholar 

  16. Wei XY, Wang QH, Li JH et al (2011) Homogeneous grafting of bagasse cellulose in ionic liquid. Adv Mater Res 233–235:2371–2374

    Article  Google Scholar 

  17. Ding SJ, Floyd JA, Walters KB (2009) Comparison of surface confined ATRP and SET-LRP syntheses for a series of amino (meth)acrylate polymer brushes on silicon substrates. J Polym Sci Polym Chem 47:6552–6560

    CAS  Google Scholar 

  18. Li JH, Wei XY, Wang QH et al (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613

    Article  CAS  Google Scholar 

  19. Anirudhan TS, Rejeena SR, Tharun AR (2012) Preparation, characterization and adsorption behavior of tannin-modified poly(glycidylmethacrylate)-grafted zirconium oxide-densified cellulose for the selective separation of bovine serum albumin. Colloids Surf B: Biointerfaces 93:49–58

    Article  CAS  Google Scholar 

  20. Guo Y, Wang X, Shen Z et al (2013) Preparation of cellulose-graft-poly(ε-caprolactone) nanomicelles by homogeneous ROP in ionic liquid. Carbohydr Polym 92:77–83

    Article  CAS  Google Scholar 

  21. Jiang XZ, Ge ZS, Xu J et al (2007) Fabrication of multiresponsive shell cross-linked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability. Biomacromolecules 8:3184–3192

    Article  CAS  Google Scholar 

  22. Shen Y, Qi L, Wei XY et al (2011) Preparation of well-defined environmentally responsive polymer brushes on monolithic surface by two-step atom transfer radical polymerization method for HPLC. Polymer 52:3725–3731

    Article  CAS  Google Scholar 

  23. Emileh A, Vasheghani-Farahani E, Imani M (2007) Swelling behavior, mechanical properties and network parameters of pH- and temperature-sensitive hydrogels of poly((2-dimethyl amino) ethyl methacrylate-co-butyl methacrylate). Eur Polym J 43:1986–1995

    Article  CAS  Google Scholar 

  24. Zhang MM, Liu L, Wu CL et al (2007) Synthesis, characterization and application of well-defined environmentally responsive polymer brushes on the surface of colloid particles. Polymer 48:1989–1997

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Fundamental Scientific Research Funds for Chinese Academy of Tropical Agricultural Sciences (No.1630062013012). The work is also partially supported by Major Science and Technology Projects of Hainan Province (ZDZX2013023-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Chang, G., Li, J. et al. Preparation of pH- and salinity-responsive cellulose copolymer in ionic liquid. J Polym Res 21, 535 (2014). https://doi.org/10.1007/s10965-014-0535-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0535-z

Keywords

Navigation