Skip to main content
Log in

Chebyshev Approximation by Linear Combinations of Fixed Knot Polynomial Splines with Weighting Functions

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we derive conditions for best uniform approximation by fixed knots polynomial splines with weighting functions. The theory of Chebyshev approximation for fixed knots polynomial functions is very elegant and complete. Necessary and sufficient optimality conditions have been developed leading to efficient algorithms for constructing optimal spline approximations. The optimality conditions are based on the notion of alternance (maximal deviation points with alternating deviation signs). In this paper, we extend these results to the case when the model function is a product of fixed knots polynomial splines (whose parameters are subject to optimization) and other functions (whose parameters are predefined). This problem is nonsmooth, and therefore, we make use of convex and nonsmooth analysis to solve it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nürnberger, G.: Approximation by Spline Functions. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  2. Nürnberger, G., Schumaker, L., Sommer, M., Strauss, H.: Approximation by generalized splines. J. Math. Anal. Appl. 108, 466–494 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rice, J.: Characterization of Chebyshev approximation by splines. SIAM J. Numer. Anal. 4(4), 557–567 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  4. Schumaker, L.: Uniform approximation by Chebyshev spline functions. II: free knots. SIAM J. Numer. Anal. 5, 647–656 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sukhorukova, N., Ugon, J.: Characterization theorem for best linear spline approximation with free knots. Dyn. Contin. Discrete Impuls. Syst. 17(5), 687–708 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Sukhorukova, N., Ugon, J.: Characterization theorem for best polynomial spline approximation with free knots. Trans. Am. Math. Soc. arXiv:1412.2323 (2016)

  7. Gavurin, M., Malozemov, V.: Extremum problems with linear constraints. Leningrad University Press, Leningrad (1984)

    MATH  Google Scholar 

  8. Vasil’ev, A.A., Malozemov, V.N., Pevnyi, A.B.: Interpolation and approximation by spline functions of arbitrary defect. Vestn. Leningr. Univ. [Mat.] 12, 262–271 (1980)

    MATH  Google Scholar 

  9. Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  10. Demyanov, V., Rubinov, A.: Constructive Nonsmooth Analysis. Peter Lang, Frankfurt am Main (1995)

    MATH  Google Scholar 

  11. Demyanov, V., Rubinov, A. (eds.): Quasidifferentiability and Related Topics, Nonconvex Optimization and Its Applications, vol. 43. Kluwer Academic, London (2000)

  12. Nürnberger, G.: Bivariate segment approximation and free knot splines: research problems 96–4. Constr. Approx. 12(4), 555–558 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zamir, Z.R., Sukhorukova, N., Amiel, H., Ugon, A., Philippe, C.: Optimization-based features extraction for k-complex detection. ANZIAM 55, C384–C398 (2014)

    Article  MathSciNet  Google Scholar 

  14. Zamir, Z.R., Sukhorukova, N., Amiel, H., Ugon, A., Philippe, C.: Convex optimisation-based methods for k-complex detection. Appl. Math. Comput. 268, 947–956 (2015)

    MathSciNet  Google Scholar 

  15. Zamir, Z.R., Sukhorukova, N.: Linear least squares problems involving fixed knots polynomial splines and their singularity study. arXiv:1503.01176 (2015)

  16. Sukhorukova, N.: Uniform approximation by the highest defect continuous polynomial splines: necessary and sufficient optimality conditions and their generalisations. J. Optim. Theory Appl. 147(2), 378–394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Demyanov, V., Malozemov, V.: Introduction to Minimax. Wiley, New York (1974)

    Google Scholar 

  18. Stiefel, E.: Note on jordan elimination, linear programming and tchebycheff approximation. Numer. Math. 2(1), 1–17 (1960). doi:10.1007/BF01386203

    Article  MathSciNet  MATH  Google Scholar 

  19. Carathéodory, C.: Uber den variabilitatsbereich der fourierschen konstanten von positiven harmonischen funktionen. Rend. Circ. Mat. Palermo (2) Suppl. 32(1), 193–217 (1911). doi:10.1007/BF03014795

    Article  MATH  Google Scholar 

  20. Mirrlees, J.A.: Optimal tax theory: a synthesis. J. Public Econ. 6(4), 327–358 (1976)

    Article  Google Scholar 

  21. Tuomala, M.: Optimal Income Tax and Redistribution. Oxford University Press, Oxford (1990)

    Google Scholar 

  22. Sukhorukova, N.: A generalization of the remez algorithm to a class of linear spline approximation problems with constraints on spline parameters. Optim. Methods Softw. 23(5), 793–810 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Remez, E.Y.: General Computation Methods of Chebyshev Approximation. The Problems with Linear Real Parameters. Publishing House of the Academy of Science of the Ukrainian SSR, Kiev (1957). English translation, AEC-TR-4491, United States Atomic Energy Commission

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezda Sukhorukova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhorukova, N., Ugon, J. Chebyshev Approximation by Linear Combinations of Fixed Knot Polynomial Splines with Weighting Functions. J Optim Theory Appl 171, 536–549 (2016). https://doi.org/10.1007/s10957-016-0887-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0887-0

Keywords

Mathematics Subject Classification

Navigation