Skip to main content
Log in

Prediction of capillary transport of alkali activated slag cementitious binders under unsaturated conditions by elliptical pore shape modeling

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

By modelling pore cross-sections as ellipses, this paper advances a recent model for predicted unsaturated water flow within concrete (Collins and Sanjayan, J Porous Mater doi:10.1007/s10934-008-9245-4, 2008). Predicted and measured unsaturated flow within concretes composed of two different cementitious binders, namely alkali activated slag (AAS) and ordinary Portland cement (OPC), are contrasted. AAS has environmental benefit due to significantly less energy required (than OPC) during manufacture, however predictive modelling of unsaturated flow of water within AAS concrete has had no prior investigation. Factors that significantly affect unsaturated flow within concrete, including age of sample and the type of sample conditioning (curing) prior to testing, are analysed. The prediction model, incorporating elliptical cross-sectional pore shape, shows reasonable agreement with sorptivity test data for AAS, however the circular cross-section better predicts unsaturated flow within OPC concrete. Although, the actual pore cross-sections are neither truly circular nor elliptical, adoption of an equivalent ellipse for AAS significantly reduces the margin between the predicted and measured water uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.K. Mehta, in Proc. 3rd Int. Conf. Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete., ACI SP-114, 1, (1989), p. 1–43

  2. F.G. Collins, J.G. Sanjayan, J. Mat. Civil Eng. 20(9), 565–570 (2008)

    Article  CAS  Google Scholar 

  3. J. Malolepszy, J. Deja, Silic. Ind. J. 11–12, 179–186 (1988)

    Google Scholar 

  4. F.G. Collins, J.G. Sanjayan, Cem. Concr. Compos. 23(4–5), 345–352 (2001)

    Article  CAS  Google Scholar 

  5. F.G. Collins, J.G. Sanjayan, J. Porous Mater. Online first (2008). doi:10.1007/s10934-008-9245-4, http://www.springerlink.com/content/901602420m671537/fulltext.html. Accessed 07 Aug 2008

  6. T. Young, Philos. Trans. R. Soc. Lond. 95, 65 (1805)

    Article  Google Scholar 

  7. E.W. Washburn, Phys. Rev. 18(3), 273–283 (1921)

    Article  Google Scholar 

  8. H.-J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces (Wiley-VCH Verlag & Co, Berlin, 1993), pp. 118–144

    Google Scholar 

  9. D. Myers, Surfaces, Interfaces, and Colloids: Principles and Applications, 2nd edn. (Wiley, Drew, 1999), pp. 97–124

    Google Scholar 

  10. S. Chatterji, Cem. Concr. Compos. 26, 75–79 (2004)

    Article  CAS  Google Scholar 

  11. J.R. Philip, Soil Sci. 84, 257–264 (1957)

    Article  Google Scholar 

  12. C. Hall, Build Environ. 12, 117–125 (1977)

    Article  Google Scholar 

  13. C. Hall, T.K.-M. Tse, Build Environ. 21(2), 113–118 (1986)

    Article  Google Scholar 

  14. P.A. Claisse, H.I. Elsayad, I.G. Shaaban, J. Mater. Civ. Eng. 9, 105 (1997)

    Google Scholar 

  15. C. Hall, M.H.R. Yau, Build Environ. 22(1), 77–82 (1987)

    Article  Google Scholar 

  16. D.N. Winslow, M.D. Cohen, D.P. Bentz, K.A. Snyder, E.J. Garboczi, Cem. Concr. Res. 24(1), 25–37 (1994)

    Article  CAS  Google Scholar 

  17. B.J. Lampacher, G.E. Blight, J. Mater. Civ. Eng. 10, 21–25 (1998)

    Google Scholar 

  18. K.I. Hazrati, L. Pel, J. Marchand, K. Kopinga, M. Pigeon, Mater. Struct. 35, 614–622 (2002)

    CAS  Google Scholar 

  19. L.J. Parrott, Cem. Concr. Res. 22, 1077–1088 (1992)

    Article  CAS  Google Scholar 

  20. P.B. Bamforth, D.C. Pocock, P.C. Robery, in Proc. Int Conf Our World Concrete and Structures, Singapore, 27–28 August 1985, pp. 1–33

  21. D. Shi, D.N. Winslow, Cem. Concr. Res. 15, 645–654 (1985)

    Article  CAS  Google Scholar 

  22. D. Bonen, in Proc. 2nd Int Symp Advances in Concrete through Science and Engineering, ed by J. Marchand, B. Bissonnette, R. Gagné, M. Jolin, F. Paradis. 11–13 September 2006, Quebec City, Canada, pp. 86–94

  23. E. Gallucci, K. Scrivener, A. Groso, M. Stampanoni, G. Margaritondo, Cem. Concr. Res. 37, 360–368 (2007)

    Article  CAS  Google Scholar 

  24. H. Wang, Q. Li, Int. J. Solids Struct. 44, 1370–1379 (2007)

    Article  Google Scholar 

  25. L.O. Yaman, H.M. Aktan, N. Hearn, Mat. Struct. 35, 110–116 (2002)

    Article  CAS  Google Scholar 

  26. R. Fisker, J.M. Carstensen, M.F. Hansen, F. Bodker, S. Morup, J. Nanopart. Res. 2(3), 267–277 (2000)

    Article  CAS  Google Scholar 

  27. K. Tanaka, K. Kurumisawa, Cem. Concr. Res. 32, 1435–1441 (2002)

    Article  CAS  Google Scholar 

  28. L. Helfen, F. Dehn, P. Mikulık, T. Baumbach, Adv. Cem. Res. 17(3), 103–111 (2005)

    Article  CAS  Google Scholar 

  29. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U.S. Department of Commerce, Washington DC, 1964), pp. 589–616

    Google Scholar 

  30. S. Ramanujan, Collected Works (Cambridge University Press, 1927; reprinted American Mathematical Society, Providence, 2000)

  31. M.A.B. Promentilla, T. Sugiyama, T. Hitomi, N. Takeda. Cem. Concr. Res. (2009). doi:10.1016/j.cemconres.2009.03.005

  32. F.G. Collins, J.G. Sanjayan, Cem. Concr. Res. 29(3), 455–458 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support for this project is jointly provided by Independent Cement and Lime Pty Ltd, Blue Circle Southern Cement Ltd and Australian Steel Mill Services. The authors thank the sponsors especially Alan Dow, Tom Wauer, Katherine Turner, Paul Ratcliff, John Ashby, and Dr. Ihor Hinczak for the guidance and support. The enthusiastic participation of final year students Soon Keat Lim and Eric Tan in this project is very much appreciated. The efforts and assistance with the laboratory work provided by Jeff Doddrell, Roger Doulis, and Peter Dunbar are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Collins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, F., Sanjayan, J. Prediction of capillary transport of alkali activated slag cementitious binders under unsaturated conditions by elliptical pore shape modeling. J Porous Mater 17, 435–442 (2010). https://doi.org/10.1007/s10934-009-9305-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-009-9305-4

Keywords

Navigation