Skip to main content
Log in

Prediction of convective transport within unsaturated concrete utilizing pore size distribution data

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The durability of concrete structures is often compromised by physical and chemical interaction with the external environment that leads to ongoing maintenance and, in the worst cases, can lead to reduced structural integrity and consequent asset replacement. Concrete is a porous material and most field-exposed concrete is partially saturated with water. Where the concrete is unsaturated and there is no external water pressure acting on a concrete surface, the primary mechanisms of transport into concrete are convective-diffusion ingress (i.e. uptake of water and water-borne agents due to capillary attraction). This paper assesses capillarity and outlines a predictive model of the uptake of water by concrete based on analysis of the pore size distribution. It is acknowledged that concrete has a multitude of internal pores with a broad range of lengths and cross-sectional shapes, surface roughness, tortuosities, random meeting and divergence with adjacent pores, microcracks and fractures, and variable pore-water chemical composition, however the prediction model shows reasonable agreement with water sorptivity test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5

Similar content being viewed by others

References

  1. C. Hall, Build Environ. 12, 117–125 (1977). doi:10.1016/0360-1323(77)90040-3

    Article  Google Scholar 

  2. C. Hall, T.K.-M. Tse, Build Environ. 21(2), 113–118 (1986). doi:10.1016/0360-1323(86)90017-X

    Article  Google Scholar 

  3. P.A. Claisse, H.I. Elsayad, I. G. Shaaban, J. Mater. Civ. Eng. August, 105–110 (1997)

  4. C. Hall, M.H.R. Yau, Build Environ. 22(1), 77–82 (1987). doi:10.1016/0360-1323(87)90044-8z

    Article  Google Scholar 

  5. D.N. Winslow, M.D. Cohen, D.P. Bentz, K.A. Snyder, E.J. Garboczi, Cement Concr. Res. 24(1), 25–37 (1994). doi:10.1016/0008-8846(94)90079-5

    Article  CAS  Google Scholar 

  6. B.J. Lampacher, G.E. Blight, J. Mater. Civ. Eng. February, 21–25 (1998)

  7. K.I. Hazrati, L. Pel, J. Marchand, K. Kopinga, M. Pigeon. Mater. Struct. 35, 614–622 (2002)

  8. L.J. Parrott, Cement Concr. Res. 22, 1077–1088 (1992). doi:10.1016/0008-8846(92)90038-W

    Article  CAS  Google Scholar 

  9. S. Chatterji, Cement Concr. Compos. 26, 75–79 (2004). doi:10.1016/S0958-9465(02)00124-5

    Article  CAS  Google Scholar 

  10. C. Hall, Mag. Concr. Res. 41(147), 51–61 (1989)

    Article  CAS  Google Scholar 

  11. G. Ye, Cement Concr. Res. 35, 167–176 (2005). doi:10.1016/j.cemconres.2004.07.033

    Article  CAS  Google Scholar 

  12. N. Neithalath, ACI Mater. J. 103(3), 209–217 (2006)

    Google Scholar 

  13. J. Kodikara, M. Whitewhick, P.G. Ranjith, Aust. Geomech. 41(3), 115–131 (2006)

    Google Scholar 

  14. L. Hanzic, R. Ilic, Cement Concr. Res. 33, 1385–1388 (2003). doi:10.1016/S0008-8846(03)00070-X

    Article  CAS  Google Scholar 

  15. T. Young, Philos. Trans. R. Soc. Lond. 95, 65 (1805)

    Google Scholar 

  16. E.W. Washburn, Phys. Rev. 18(3), 273–283 (1921). doi:10.1103/PhysRev.17.273

    Article  Google Scholar 

  17. H.-J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces (Wiley-VCH Verlag & Co., 1993), pp. 118–144

  18. D. Myers, Surfaces, Interfaces, and Colloids: Principles and Applications, 2nd edn. (Wiley, Drew, 1999), pp. 97–124

    Google Scholar 

  19. J.R. Philip, Soil Sci. 84, 257–264 (1957)

    Article  Google Scholar 

  20. P.B. Bamforth, D.C. Pocock, P.C. Robery, Proceedings of International Conference on Our World Concrete and Structures, Singapore, 27–28 August 1985, pp. 1–33

  21. D. Shi, D.N. Winslow, Cement Concr. Res. 15, 645–654 (1985). doi:10.1016/0008-8846(85)90064-X

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support for this project is jointly provided by Independent Cement and Lime Pty Ltd., Blue Circle Southern Cement Ltd., and Australian Steel Mill Services. The authors thank the sponsors especially Alan Dow, Tom Wauer, Katherine Turner, Paul Ratcliff, John Ashby, and Dr. Ihor Hinczak for the guidance and support. The enthusiatic participation of final year students Soon Keat Lim and Eric Tan in this project is very much appreciated. The efforts and assistance with the laboratory work provided by Jeff Doddrell, Roger Doulis, and Peter Dunbar are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Collins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, F., Sanjayan, J. Prediction of convective transport within unsaturated concrete utilizing pore size distribution data. J Porous Mater 16, 651–656 (2009). https://doi.org/10.1007/s10934-008-9245-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-008-9245-4

Keywords

Navigation