Skip to main content
Log in

Crystallization and Preliminary X-Ray Diffraction Analysis of a Mammal Inositol 1,3,4,5,6-Pentakisphosphate 2-Kinase

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5 2-K) is an enzyme that catalyses the formation of phytic acid (IP6) from IP5 and ATP. In mammals, IP6 is involved in multiple events such as DNA repair and mRNA edit and it is the precursor of inositol pyrophosphates, emerging compounds shown to have an essential role in apoptosis. In addition, IP5 2-K have functions in cells independently of its catalytic activity, for example in rRNA biogenesis. We pursue the structure determination of a mammal IP5 2-K by Protein Crystallography. For this purpose, we have designed protocols for recombinant expression and purification of Mus musculus IP5 2-K (mIP5 2-K). The recombinant protein has been expressed in two different hosts, E. coli and insect cells using the LSLt and GST fusion proteins, respectively. Both macromolecule preparations yielded crystals of similar quality. Best crystals diffracted to 4.3 Å (E. coli expression) and 4.0 Å (insect cells expression) maximum resolution. Both type of crystals belong to space group P212121 with an estimated solvent content compatible with the presence of two molecules per asymmetric unit. Gel filtration experiments are in agreement with this enzyme being a monomer. Crystallographic data analysis is currently undergoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

BEVS:

Baculovirus expression vector system

COP9:

Constitutive photomorphogenesis 9

DTT:

1,4-Dithiothreitol

GST:

Glutathione S-transferase

IGEPAL:

Octylphenoxy poly(ethyleneoxy)etanol

InsP:

Inositol phosphate

IP5 :

Inositol pentakisphosphate

IP5 2-K:

Inositol 1,3,4,5,6-pentakisphosphate 2-kinase

IP6 :

Inositol hexakisphosphate

IP7 :

Diphospho-inositol pentakisphosphate

IP8 :

Bisdiphospho-inositol tetrakisphosphate

IPK:

Inositol polyphosphate kinase

IPTG:

Isopropyl-β-d-1-thiogalactopyranoside

LSL:

Laetiporus sulphurous lectin

PEG:

Polyethylene glycol

PMSF:

Phenylmethanesulfonyl-fluoride

SDS-PAGE:

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

SF21:

Sodopter Frugiperda cell line

TEV:

Tobacco etch virus

References

  1. Ives EB, Nichols J, Wente SR, York JD (2000) Biochemical and functional characterization of inositol 1,3,4, 5, 6-pentakisphosphate 2-kinases. J Biol Chem 275(47):36575–36583

    Article  CAS  Google Scholar 

  2. Brehm MA, Schenk TM, Zhou X, Fanick W, Lin H, Windhorst S, Nalaskowski MM, Kobras M, Shears SB, Mayr GW (2007) Intracellular localization of human Ins(1,3,4,5,6)P5 2-kinase. Biochem J 408(3):335–345

    Article  CAS  Google Scholar 

  3. Hanakahi LA, West SC (2002) Specific interaction of IP6 with human Ku70/80, the DNA-binding subunit of DNA-PK. The EMBO J 21(8):2038–2044

    Article  CAS  Google Scholar 

  4. Shen X, Xiao H, Ranallo R, Wu WH, Wu C (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299(5603):112–114

    Article  CAS  Google Scholar 

  5. Macbeth MR, Schubert HL, Vandemark AP, Lingam AT, Hill CP, Bass BL (2005) Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309(5740):1534–1539

    Article  CAS  Google Scholar 

  6. Mulugu S, Bai W, Fridy PC, Bastidas RJ, Otto JC, Dollins DE, Haystead TA, Ribeiro AA, York JD (2007) A conserved family of enzymes that phosphorylate inositol hexakisphosphate. Science 316(5821):106–109

    Article  CAS  Google Scholar 

  7. Thota SG, Bhandari R (2015) The emerging roles of inositol pyrophosphates in eukaryotic cell physiology. J Biosci 40(3):593–605

    Article  CAS  Google Scholar 

  8. Rao F, Cha J, Xu J, Xu R, Vandiver MS, Tyagi R, Tokhunts R, Koldobskiy MA, Fu C, Barrow R, Wu M, Fiedler D, Barrow JC, Snyder SH (2014) Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2. Mol Cell 54(1):119–132

    Article  CAS  Google Scholar 

  9. Brehm MA, Wundenberg T, Williams J, Mayr GW, Shears SB (2013) A non-catalytic role for inositol 1,3,4,5,6-pentakisphosphate 2-kinase in the synthesis of ribosomal RNA. J Cell Sci 126(Pt 2):437–444

    Article  CAS  Google Scholar 

  10. Verbsky JW, Chang SC, Wilson MP, Mochizuki Y, Majerus PW (2005) The pathway for the production of inositol hexakisphosphate in human cells. J Biol Chem 280(3):1911–1920

    Article  CAS  Google Scholar 

  11. Scherer PC, Ding Y, Liu Z, Xu J, Mao H, Barrow JC, Wei N, Zheng N, Snyder SH, Rao F (2016) Inositol hexakisphosphate (IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function. Proc Natl Acad Sci USA 113(13):3503–3508

    Article  CAS  Google Scholar 

  12. Sarmah B, Latimer AJ, Appel B, Wente SR (2005) Inositol polyphosphates regulate zebrafish left-right asymmetry. Dev Cell 9(1):133–145

    Article  CAS  Google Scholar 

  13. Gonzalez B, Baños-Sanz JI, Villate M, Brearley CA, Sanz-Aparicio J (2010) Inositol 1,3,4,5,6-pentakisphosphate 2-kinase is a distant IPK member with a singular inositide binding site for axial 2-OH recognition. Proc Natl Acad Sci USA 107(21):9608–9613

    Article  CAS  Google Scholar 

  14. Baños-Sanz JI, Sanz-Aparicio J, Whitfield H, Hamilton C, Brearley CA, Gonzalez B (2012) Conformational changes in inositol 1,3,4,5,6-pentakisphosphate 2-kinase upon substrate binding: role of N-terminal lobe and enantiomeric substrate preference. J Biol Chem 287(35):29237–29249

    Article  Google Scholar 

  15. Gosein V, Miller GJ (2013) Roles of phosphate recognition in inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) substrate binding and activation. J Biol Chem 288(37):26908–26913

    Article  CAS  Google Scholar 

  16. Gosein V, Miller GJ (2013) Conformational stability of inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) dictates its substrate selectivity. J Biol Chem 288(52):36788–36795

    Article  CAS  Google Scholar 

  17. Gosein V, Leung TF, Krajden O, Miller GJ (2012) Inositol phosphate-induced stabilization of inositol 1,3,4,5,6-pentakisphosphate 2-kinase and its role in substrate specificity. Protein Sci 21(5):737–742

    Article  CAS  Google Scholar 

  18. Angulo I, Acebron I, de las Rivas B, Munoz R, Rodriguez-Crespo I, Menendez M, Garcia P, Tateno H, Goldstein IJ, Perez-Agote B, Mancheno JM (2011) High-resolution structural insights on the sugar-recognition and fusion tag properties of a versatile beta-trefoil lectin domain from the mushroom Laetiporus sulphureus. Glycobiology 21(10):1349–1361

    Article  CAS  Google Scholar 

  19. Abdulrahman W, Uhring M, Kolb-Cheynel I, Garnier JM, Moras D, Rochel N, Busso D, Poterszman A (2009) A set of baculovirus transfer vectors for screening of affinity tags and parallel expression strategies. Anal Biochem 385(2):383–385

    Article  CAS  Google Scholar 

  20. Osz-Papai J, Radu L, Abdulrahman W, Kolb-Cheynel I, Troffer-Charlier N, Birck C, Poterszman A (2015) Insect cells-baculovirus system for the production of difficult to express proteins. Methods Mol Biol 1258:181–205

    Article  CAS  Google Scholar 

  21. Juanhuix J, Gil-Ortiz F, Cuni G, Colldelram C, Nicolas J, Lidon J, Boter E, Ruget C, Ferrer S, Benach J (2014) Developments in optics and performance at BL13-XALOC, the macromolecular crystallography beamline at the ALBA synchrotron. J Synchrotron Radiat 21(Pt 4):679–689

    Article  CAS  Google Scholar 

  22. Kabsch W (2010) Xds. Acta Crystallogr Sect D 66(Pt 2):125–132

    Article  CAS  Google Scholar 

  23. Evans PR (2011) An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr Sect D 67(Pt 4):282–292

    Article  CAS  Google Scholar 

  24. The CCP4 Collaborative Computational Project 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50(Pt 5)760–763

    Article  Google Scholar 

  25. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr Sect D 67(Pt 4):235–242

    Article  CAS  Google Scholar 

  26. Heras B, Martin JL (2005) Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr Sect D 61(Pt 9):1173–1180

    Article  Google Scholar 

  27. Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33(2):491–497

    Article  CAS  Google Scholar 

  28. Vagin A, Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr Sect D 66(Pt 1):22–25

    Article  CAS  Google Scholar 

  29. Bunkoczi G, Echols N, McCoy AJ, Oeffner RD, Adams PD, Read RJ (2013) Phaser.MRage: automated molecular replacement. Acta Crystallogr 69(Pt 11):2276–2286

    CAS  Google Scholar 

  30. Verbsky J, Lavine K, Majerus PW (2005) Disruption of the mouse inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene, associated lethality, and tissue distribution of 2-kinase expression. Proc Natl Acad Sci USA 102(24):8448–8453

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Juana María Gonzalez Rubio for technical assistance and help with preparation in protein constructs. We thank the European Synchrotron Radiation Facility (Grenoble, France) and ALBA CELLS XALOC 13 for providing beam time and assistance during data collection. The authors acknowledge the support and the use of resources of the French Infrastructure for Integrated Structural Biology FRISBI ANR-10-INSB-05 and of Instruct, a Landmark ESFRI project. We would also like to thank the staff of the mass spectrometry facility at the IQFR-CSIC. This work and E.F.-E. were supported by Grants BFU2011-24982 and BFU2014-53762-P from the “Spanish Ministry of Economy and Competitiveness”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz González.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco-Echevarría, E., Sanz-Aparicio, J., Troffer-Charlier, N. et al. Crystallization and Preliminary X-Ray Diffraction Analysis of a Mammal Inositol 1,3,4,5,6-Pentakisphosphate 2-Kinase. Protein J 36, 240–248 (2017). https://doi.org/10.1007/s10930-017-9717-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-017-9717-y

Keywords

Navigation