Skip to main content

Advertisement

Log in

IAPSO-AIRS: A novel improved machine learning-based system for wart disease treatment

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Wart disease (WD) is a skin illness on the human body which is caused by the human papillomavirus (HPV). This study mainly concentrates on common and plantar warts. There are various treatment methods for this disease, including the popular immunotherapy and cryotherapy methods. Manual evaluation of the WD treatment response is challenging. Furthermore, traditional machine learning methods are not robust enough in WD classification as they cannot deal effectively with small number of attributes. This study proposes a new evolutionary-based computer-aided diagnosis (CAD) system using machine learning to classify the WD treatment response. The main architecture of our CAD system is based on the combination of improved adaptive particle swarm optimization (IAPSO) algorithm and artificial immune recognition system (AIRS). The cross-validation protocol was applied to test our machine learning-based classification system, including five different partition protocols (K2, K3, K4, K5 and K10). Our database consisted of 180 records taken from immunotherapy and cryotherapy databases. The best results were obtained using the K10 protocol that provided the precision, recall, F-measure and accuracy values of 0.8908, 0.8943, 0.8916 and 90%, respectively. Our IAPSO system showed the reliability of 98.68%. It was implemented in Java, while integrated development environment (IDE) was implemented using NetBeans. Our encouraging results suggest that the proposed IAPSO-AIRS system can be employed for the WD management in clinical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Akben, S. B., Predicting the success of wart treatment methods using decision tree based fuzzy informative images. Biocybernetics and Biomedical Engineering., 2018.

  2. Kyriakis, K. P., Pagana, G., Michailides, C., Emmanuelides, S., Palamaras, I., and Terzoudi, S., Lifetime prevalence fluctuations of common and plane viral warts. J. Eur. Acad. Dermatol. Venereol. 21(2):260–262, 2007.

    PubMed  Google Scholar 

  3. Hogendoorn, G. K., Bruggink, S. C., Hermans, K. E., Kouwenhoven, S. T. P., Quint, K. D., Wolterbeek, R. et al., Developing and validating the Cutaneous WARTS (CWARTS) diagnostic tool: a novel clinical assessment and classification system for cutaneous warts. Br. J. Dermatol. 178(2):527–534, 2018.

    Article  CAS  PubMed  Google Scholar 

  4. Karadaghy, B., Kamal, N. M., and Othman, N., Prevalence and Knowledge about Genital and other Warts among Students in Sulaimani Polytechnic University: A cross-sectional study. Kurdistan Journal of Applied Research:96–101, 2018.

  5. Loo, S. K. F., and Tang, W. Y. M., Warts (non-genital). BMJ Clinical Evidence, 2009.

  6. Uzun, R., İşler, Y., & Toksan, M., Choose of wart treatment method using Naive Bayes and k-nearest neighbors classifiers. In: 2018 26th Signal Processing and Communications Applications Conference (SIU). IEEE, 2018.

  7. Khozeimeh, F., Alizadehsani, R., Roshanzamir, M., Khosravi, A., Layegh, P., and Nahavandi, S., An expert system for selecting wart treatment method. Comput. Biol. Med. 81:167–175, 2017.

    Article  PubMed  Google Scholar 

  8. Al-antari, M. A., Al-masni, M. A., Choi, M. T., Han, S. M., and Kim, T. S., A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int. J. Med. Inform. 117:44–54, 2018.

    Article  PubMed  Google Scholar 

  9. Saba, L., Jain, P. K., Suri, H. S., Ikeda, N., Araki, T., Singh, B. K. et al., Plaque tissue morphology-based stroke risk stratification using carotid ultrasound: a polling-based PCA learning paradigm. J. Med. Syst. 41(6):98, 2017.

    Article  PubMed  Google Scholar 

  10. Acharya, U. R., Faust, O., Sree, S. V., Molinari, F., Garberoglio, R., and Suri, J. S., Cost-effective and non-invasive automated benign & malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: a class of ThyroScan™ algorithms. Technology in Cancer Research & Treatment 10(4):371–380, 2011.

    Article  CAS  Google Scholar 

  11. Boi, A., Jamthikar, A. D., Saba, L., Gupta, D., Sharma, A., Loi, B. et al., A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography. Curr. Atheroscler. Rep. 20(7):33, 2018.

    Article  PubMed  CAS  Google Scholar 

  12. Araki, T., Ikeda, N., Shukla, D., Jain, P. K., Londhe, N. D., Shrivastava, V. K. et al., PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: A link between carotid and coronary grayscale plaque morphology. Comput. Methods Prog. Biomed. 128:137–158, 2016.

    Article  Google Scholar 

  13. Maniruzzaman, M., Rahman, M. J., Al-MehediHasan, M., Suri, H. S., Abedin, M. M., El-Baz, A., and Suri, J. S., Accurate Diabetes Risk Stratification Using Machine Learning: Role of Missing Value and Outliers. J. Med. Syst. 42(5):92, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maniruzzaman, M., Kumar, N., Abedin, M. M., Islam, M. S., Suri, H. S., El-Baz, A. S., and Suri, J. S., Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm. Comput. Methods Prog. Biomed. 152:23–34, 2017.

    Article  Google Scholar 

  15. Shrivastava, V. K., Londhe, N. D., Sonawane, R. S., and Suri, J. S., A novel and robust Bayesian approach for segmentation of psoriasis lesions and its risk stratification. Comput. Methods Prog. Biomed. 150:9–22, 2017.

    Article  Google Scholar 

  16. Gulshan, V., Peng, L., and Coram, M., (2016). Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 316(22):2402–2410, 2016.

    Article  PubMed  Google Scholar 

  17. Nayak, D. R., Dash, R., and Majhi, B., Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests. Neurocomputing 177:188–197, 2016.

    Article  Google Scholar 

  18. Majid, A., Ali, S., Iqbal, M., and Kausar, N., Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines. Comput. Methods Prog. Biomed. 113(3):792–808, 2014. https://doi.org/10.1016/j.cmpb.2014.01.001.

    Article  Google Scholar 

  19. Shi, L., Xi, L., Ma, X. M., Weng, M., and Hu, X. H., A novel ensemble algorithm for biomedical classification based on ant colony optimization. Appl. Soft Comput. 11:5674–5683, 2011.

    Article  Google Scholar 

  20. Arabasadi, Z., Alizadehsani, R., Roshanzamir, M., Moosaei, H., and Yarifard, A. A., Computer aided decision making for heart disease detection using hybrid neural network-genetic algorithm. Comput. Methods Prog. Biomed. 141:19–26, 2017.

    Article  Google Scholar 

  21. Kim, J. K., and Kang, S., Neural network-based coronary heart disease risk prediction using feature correlation analysis. Journal of Healthcare Engineering 2017:1–13, 2017.

    CAS  Google Scholar 

  22. Danaee, P., Ghaeini, R., and Hendrix, D. A., A deep learning approach for cancer detection and relevant gene identification. Pac. Symp. Biocomput. 22:219–229, 2016.

    PubMed Central  Google Scholar 

  23. Kourou, K., Exarchos, T. P., and Exarchos, K. P., Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17, 2015.

    Article  CAS  PubMed  Google Scholar 

  24. Summers, M. J., Madl, T., Vercelli, A. E., Aumayr, G., Bleier, D. M., and Ciferri, L., Deep Machine Learning Application to the Detection of Preclinical Neurodegenerative Diseases of Aging. DigitCult - Scientific Journal on Digital Cultures 2(2):9–24, 2017. https://doi.org/10.4399/97888255088952.

    Article  Google Scholar 

  25. Chikh, M. A., Saidi, M., and Settouti, N., J. Med. Syst. 36:2721, 2012. https://doi.org/10.1007/s10916-011-9748-4.

    Article  PubMed  Google Scholar 

  26. Abdar, M., and Yen, N. Y., Design of A Universal User Model for Dynamic Crowd Preference Sensing and Decision-Making Behavior Analysis. IEEE Access 5:24842–24852, 2017.

    Article  Google Scholar 

  27. Xia, Y., Liu, C., Li, Y., and Liu, N., A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring. Expert Syst. Appl. 78:225–241, 2017.

    Article  Google Scholar 

  28. Hassoon, M., Kouhi, M. S., Zomorodi-Moghadam, M., & Abdar, M., Rule Optimization of Boosted C5. 0 Classification Using Genetic Algorithm for Liver disease Prediction. In: Computer and Applications (ICCA), 2017 International Conference on (pp. 299–305). IEEE, 2017.

  29. Abdar, M., Zomorodi-Moghadam, M., Das, R., and Ting, I. H., Performance analysis of classification algorithms on early detection of liver disease. Expert Syst. Appl. 67:239–251, 2017.

    Article  Google Scholar 

  30. Abdar, M., Yen, N. Y., and Hung, J. C. S., Improving the Diagnosis of Liver Disease Using Multilayer Perceptron Neural Network and Boosted Decision Trees. Journal of Medical and Biological Engineering:1–13, 2017.

  31. Zulvia, F. E., Kuo, R. J., & Roflin, E., An Initial Screening Method for Tuberculosis Diseases Using a Multi-objective Gradient Evolution-Based Support Vector Machine and C5. 0 Decision Tree. In: Computer Software and Applications Conference (COMPSAC), 2017 IEEE 41st Annual (Vol. 2, pp. 204–209). IEEE, 2017.

  32. Bai, Q., Analysis of particle swarm optimization algorithm. Computer and information science 3(1):180, 2010.

    Article  Google Scholar 

  33. Zhan, Z. H., Zhang, J., Li, Y., and Chung, H. S. H., Adaptive particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39(6):1362–1381, 2009.

    Article  Google Scholar 

  34. Toğan, V., and Daloğlu, A. T., Optimization of 3d trusses with adaptive approach in genetic algorithms. Eng. Struct. 28(7):1019–1027, 2006.

    Article  Google Scholar 

  35. Alkeshuosh, A. H., Moghadam, M. Z., Mansoori, I. A., and Abdar, M., Using pso algorithm for producing best rules in diagnosis of heart disease. 2017 International Conference on Computer and Applications (ICCA):306–311, 2017. https://doi.org/10.1109/COMAPP.2017.8079784.

  36. Paul, A., Shill, P., Rabin, M. et al., Adaptive weighted fuzzy rule-based system for the risk level assessment of heart disease. Appl. Intell. 48:1739, 2018. https://doi.org/10.1007/s10489-017-1037-6.

    Article  Google Scholar 

  37. Manikandan, R., and Saravanan, V., A novel approach on Particle Agent Swarm Optimization (PASO) in semantic mining for web page recommender system of multimedia data: a health care perspective. Multimed. Tools Appl., 2019. https://doi.org/10.1007/s11042-018-7141-8.

  38. Chen, X., Yao, X., Tang, C., Sun, Y., Wang, X., and Wu, X., Detecting Parkinson’s Disease Using Gait Analysis with Particle Swarm Optimization. In: Zhou, J., Salvendy, G. (Eds), Human Aspects of IT for the Aged Population. Applications in Health, Assistance, and Entertainment. ITAP 2018. Lecture Notes in Computer Science. Vol. 10927. Cham: Springer, 2018.

    Google Scholar 

  39. Adem, K., Hekim, M., and Demir, S., Detection of hemorrhage in retinal images using linear classifiers and iterative thresholding approaches based on firefly and particle swarm optimization algorithms. Turk. J. Electr. Eng. Comput. Sci., 2019. https://doi.org/10.3906/elk-1804-147.

    Article  Google Scholar 

  40. Wang, H., and Lv, Y., Smart pathological brain detection system by predator-prey particle swarm optimization and single-hidden layer neural-network. Multimed. Tools Appl., 2016. https://doi.org/10.1007/s11042-016-4242-0 (Online).

    Article  Google Scholar 

  41. Yang, C.-H., Yang, H.-S., and Chuang, L.-Y., PBMDR: A particle swarm optimization-based multifactor dimensionality reduction for the detection of multilocus interactions. J. Theor. Biol. 461:68–75, 2019. https://doi.org/10.1016/j.jtbi.2018.10.012.

    Article  CAS  PubMed  Google Scholar 

  42. Sakri, S. B., Rashid, N. B. A., and Zain, Z. M., Particle swarm optimization feature selection for breast cancer recurrence prediction. IEEE Access 6:29637–29647, 2018.

    Article  Google Scholar 

  43. Zhang, Y., Wang, S., Sui, Y., Yang, M., Liu, B., Cheng, H., Sun, J., Jia, W., Phillips, P., and Górriz, J. M., Multivariate Approach for Alzheimer's Disease Detection Using Stationary Wavelet Entropy and Predator-Prey Particle Swarm Optimization. Journal of Alzheimer's Disease: JAD 65(3):855–869, 2018.

    Article  PubMed  Google Scholar 

  44. Zeng, N., Qiu, H., Wang, Z., Liu, W., Zhang, H., and Li, Y., A New Switching-Delayed-PSO-Based Optimized SVM Algorithm for Diagnosis of Alzheimer’s Disease. Neurocomputing, 2018. https://doi.org/10.1016/j.neucom.2018.09.001.

    Article  Google Scholar 

  45. Nekouie, A., and Moattar, M. H., Missing value imputation for breast cancer diagnosis data using tensor factorization improved by enhanced reduced adaptive particle swarm optimization. Journal of King Saud University - Computer and Information Sciences, 2018. https://doi.org/10.1016/j.jksuci.2018.01.006.

  46. Wang, X., Wang, G., and Wu, Y., An Adaptive Particle Swarm Optimization for Underwater Target Tracking in Forward Looking Sonar Image Sequences. IEEE Access 6:46833–46843, 2018.

    Article  Google Scholar 

  47. Sahu, C., Kumar, P. B., and Parhi, D. R., An Intelligent Path Planning Approach for Humanoid Robots Using Adaptive Particle Swarm Optimization. International Journal on Artificial Intelligence Tools 27(05):1850015, 2018.

    Article  Google Scholar 

  48. Song, Z., Liu, B., & Cheng, H., Adaptive particle swarm optimization with population diversity control and its application in tandem blade optimization. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406218776680, 2018.

  49. Khozeimeh, F., Jabbari Azad, F., Mahboubi Oskouei, Y., Jafari, M., Tehranian, S., Alizadehsani, R., and Layegh, P., Intralesional immunotherapy compared to cryotherapy in the treatment of warts. Int. J. Dermatol. 56(4):474–478, 2017.

    Article  CAS  PubMed  Google Scholar 

  50. Cryotherapy Dataset Data Set, https://archive.ics.uci.edu/ml/datasets/Cryotherapy+Dataset+. Accessed in April 2018.

  51. Immunotherapy Dataset Data Set, https://archive.ics.uci.edu/ml/datasets/Immunotherapy+Dataset, Accessed in April 2018.

  52. Kennedy, J., Eberhart, R. (1995). Particle swarm optimization. In Neural Networks, 1995. Proceedings, IEEE International Conference on (pp. 1942–1948). IEEE, 2011.

  53. Kennedy, J., Particle swarm optimization. In Encyclopedia of machine learning (pp. 760–766). Springer US.

  54. Sengupta, S., Basak, S., & Peters, R. A., Data Clustering using a Hybrid of Fuzzy C-Means and Quantum-behaved Particle Swarm Optimization. In Computing and Communication Workshop and Conference (CCWC), 2018 IEEE 8th Annual (pp. 137–142). IEEE, 2018.

  55. Engelbrecht, A. P., Computational Intelligence. England: John Wiley & Sons. Inc., 2007.

    Book  Google Scholar 

  56. Ahmed, H., and Glasgow, J., Swarm intelligence: concepts, models and applications. Kingston: School Of Computing, Queens University Technical Report, 2012.

    Google Scholar 

  57. Shi, Y., & Eberhart, R., A modified particle swarm optimizer. In Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on (pp. 69–73). IEEE, 1998.

  58. Hatanaka, T., Korenaga, T., Kondo, N., & Uosaki, K., Search performance improvement for PSO in high dimensional space. In Particle Swarm Optimization. IntechOpen, 2009.

  59. Kawakami, K., and Meng, Z. Q., Improvement of particle swarm optimization. PIERS Online 5(3):261–264, 2009.

    Article  Google Scholar 

  60. Liu, H. R., Cui, J. C., Lu, Z. D., Liu, D. Y., and Deng, Y. J., A hierarchical simple particle swarm optimization with mean dimensional information. Appl. Soft Comput. 76:712–725, 2019.

    Article  Google Scholar 

  61. Jain, Y. K., and Bhandare, S. K., Min max normalization based data perturbation method for privacy protection. International Journal of Computer & Communication Technology 2(8):45–50, 2011.

    CAS  Google Scholar 

  62. Meera, P. S., and Hemamalini, S., Optimal Siting of Distributed Generators in a Distribution Network using Artificial Immune System. International Journal of Electrical and Computer Engineering (IJECE) 7(2):641–649, 2017.

    Article  Google Scholar 

  63. de Castro, L. N., and Timmis, J., Artificial immune systems: A novel paradigm to pattern recognition. Artificial Neural Networks in Pattern Recognition 1:67–84, 2002.

    Google Scholar 

  64. Draman, N. A., Wilson, C., and Ling, S., Bio-inspired audio content-based retrieval framework (B-ACRF). World Academy of Science. Eng. Technol. 29(5):785–790, 2009.

    Google Scholar 

  65. Timmis, J., Neal, M., and Hunt, J., An artificial immune system for data analysis. Biosystems 55(1–3):143–150, 2000.

    Article  CAS  PubMed  Google Scholar 

  66. Porselvi, S., Balaji, A. N., and Jawahar, N., Artificial immune system and particle swarm optimisation algorithms for an integrated production and distribution scheduling problem. International Journal of Logistics Systems and Management 30(1):31–68, 2018.

    Article  Google Scholar 

  67. Thumati, B., and Sarangapani, J., Authors’ Reply to “Comments on “A Novel Fault Diagnosis and Prediction Scheme Using a Nonlinear Observer With Artificial Immune System as an Online Approximator””. IEEE Trans. Control Syst. Technol. 26(1):377–378, 2018.

    Article  Google Scholar 

  68. Nikoo, M. R., and Kerachian, R., Wave Height Prediction Using Artificial Immune Recognition Systems (AIRS) and Some Other Data Mining Techniques. Iranian Journal of Science and Technology, Transactions of Civil Engineering 41(3):329–344, 2017.

    Article  Google Scholar 

  69. Brownlee, J., Artificial immune recognition system (airs)-a review and analysis. Center for Intelligent Systems and Complex Processes (CISCP), Faculty of Information and Communication Technologies (ICT), Swinburne University of Technology, Victoria, 2005.

  70. Petitjean, F., Buntine, W., Webb, G. I., and Zaidi, N., Accurate parameter estimation for Bayesian network classifiers using hierarchical Dirichlet processes. Mach. Learn. 107(8–10):1303–1331, 2018.

    Article  Google Scholar 

  71. Mahadevan, S., and Rebba, R., Validation of reliability computational models using Bayes networks. Reliab. Eng. Syst. Saf. 87(2):223–232, 2005.

    Article  Google Scholar 

  72. Gardner, M. W., and Dorling, S. R., Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ. 32(14–15):2627–2636, 1998.

    Article  CAS  Google Scholar 

  73. Bayat, F. M., Prezioso, M., Chakrabarti, B., Nili, H., Kataeva, I., and Strukov, D., Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun. 9(1):2331, 2018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Drazin, S., & Montag, M., Decision tree analysis using weka. Machine Learning-Project II, University of Miami, 1–3, 2012.

  75. Satyanarayana, N., Ramadevi, Y., & Chari, K. K., High blood pressure prediction based on AAA using J48 classifier. In Signal Processing and Communication Engineering Systems (SPACES), 2018 Conference on (pp. 121–126). IEEE, 2018.

  76. Probst, P., and Boulesteix, A. L., To Tune or Not to Tune the Number of Trees in Random Forest. J. Mach. Learn. Res. 18(181):1–18, 2018.

    Google Scholar 

  77. Pal, M., Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26(1):217–222, 2005.

    Article  Google Scholar 

  78. Waizumi, Y., Kato, N., Saruta, K., and Nemoto, Y., High speed and high accuracy rough classification for handwritten characters using hierarchical learning vector quantization. IEICE Trans. Inf. Syst. 83(6):1282–1290, 2000.

    Google Scholar 

  79. Janghel, R. R., Tiwari, R., & Shukla, A., Breast Cancer Diagnostic System using Hierarchical Learning Vector Quantization. In IJCA Proceedings on National Seminar on Application of Artificial Intelligence in Life Sciences, 2013.

  80. Sauermann, R., Boja, D., Kirschbaum, F., and Nelles, O., Particle Swarm Optimization for Automotive Model-Based Calibration. IFAC Proceedings Volumes 43(7):733–738, 2010.

    Article  Google Scholar 

  81. Guimarães, A. J., Araujo, V. J. S., de Campos Souza, P. V., Araujo, V. S., & Rezende, T. S., Using fuzzy neural networks to the prediction of improvement in expert systems for treatment of immunotherapy. In: Ibero-American Conference on Artificial Intelligence (pp. 229–240). Springer, Cham, 2018.

  82. Alizadehsani, R., Abdar, M., Jalali, S. M. J., Roshanzamir, M., Khosravi, A., & Nahavandi, S., Comparing the Performance of Feature Selection Algorithms for Wart Treatment Selection. In Proceedings of The International Workshop on Future Technology (pp. 6–18), 2018.

  83. Nugroho, H. W., Adji, T. B., and Setiawan, N. A., Random forest weighting based feature selection for c4. 5 algorithm on wart treatment selection method. International Journal on Advanced Science, Engineering and Information Technology 8(5):1858–1863, 2018.

    Article  Google Scholar 

  84. Jia, W., Deng, Y., Xin, C., Liu, X., and Pedrycz, W., A classification algorithm with Linear Discriminant Analysis and Axiomatic Fuzzy Sets. Mathematical Foundations of Computing 2(1):73–81, 2019.

    Article  Google Scholar 

  85. Junio Guimarães, A., Vitor de Campos Souza, P., Jonathan Silva Araújo, V., Silva Rezende, T., and Souza Araújo, V., Pruning Fuzzy Neural Network Applied to the Construction of Expert Systems to Aid in the Diagnosis of the Treatment of Cryotherapy and Immunotherapy. Big Data and Cognitive Computing 3(2):22, 2019.

    Article  Google Scholar 

  86. Pławiak, P., and Rzecki, K., Approximation of phenol concentration using computational intelligence methods based on signals from the metal-oxide sensor array. IEEE Sensors J. 15(3):1770–1783, 2015.

    Google Scholar 

  87. Olivas, F., Amador-Angulo, L., Perez, J., Caraveo, C., Valdez, F., and Castillo, O., Comparative study of type-2 fuzzy particle swarm, bee colony and bat algorithms in optimization of fuzzy controllers. Algorithms 10(3):101, 2017.

    Article  Google Scholar 

  88. Valdez, F., Vazquez, J. C., Melin, P., and Castillo, O., Comparative study of the use of fuzzy logic in improving particle swarm optimization variants for mathematical functions using co-evolution. Appl. Soft Comput. 52:1070–1083, 2017.

    Article  Google Scholar 

  89. Gaxiola, F., Melin, P., Valdez, F., Castro, J. R., and Castillo, O., Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO. Appl. Soft Comput. 38:860–871, 2016.

    Article  Google Scholar 

  90. Olivas, F., Valdez, F., Castillo, O., and Melin, P., Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft. Comput. 20(3):1057–1070, 2016.

    Article  Google Scholar 

  91. Melin, P., Amezcua, J., Valdez, F., and Castillo, O., A new neural network model based on the LVQ algorithm for multi-class classification of arrhythmias. Inf. Sci. 279:483–497, 2014.

    Article  Google Scholar 

  92. Pławiak, P., Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals. Swarm and Evolutionary Computation 39:192–208, 2018.

    Article  Google Scholar 

  93. Książek, W., Abdar, M., Acharya, U. R., and Pławiak, P., A novel machine learning approach for early detection of hepatocellular carcinoma patients. Cogn. Syst. Res. 54:116–127, 2019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moloud Abdar.

Ethics declarations

Conflict of interest

Author Moloud Abdar declares that he has no conflict of interest. Author Vivi Nur Wijayaningrum declares that she has no conflict of interest. Author Sadiq Hussain declares that he has no conflict of interest. Author Roohallah Alizadehsani declares that he has no conflict of interest. Author Pawel Plawiak declares that he has no conflict of interest. Author U Rajendra Acharya declares that he has no conflict of interest. Author Vladimir Makarenkov declares that he has no conflict of interest.

Ethical approval

We used two secondary datasets taken from the UCI public website (http://archive.ics.uci.edu/ml/datasets/Immunotherapy+Dataset) and (http://archive.ics.uci.edu/ml/datasets/Cryotherapy+Dataset+). No ethics approval is required for these datasets.

Animal studies

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Systems-Level Quality Improvement

Appendices

Appendix 1

List of Abbreviations/Symbols

Table 7 Shows the list of all Abbreviations/Symbols used in this study

Appendix 2

Flowchart of the proposed IAPSO for AIRS

figure a

Appendix 3

Initialization of particle position

In this study, a particle consists of 9 dimensions that describe the parameters to be used in the AIRS algorithm. These values are randomly selected in different value ranges for each parameter. The range of values for each parameter used in this study are presented in Table 8:

Table 8 Mapping between the immune system and AIRS

An example of particle initialization is shown in Table 9.

Table 9 Example of a particle

Table 9 shows that a particle consists of 9 dimensions: affinity threshold scalar, clonal rate, hypermutation rate, mutation rate, total resources, stimulation threshold, ARB cell pool size, memory cell pool size, and k-NN with different values. These values are then used as parameters in AIRS.

Fitness value

The fitness function is used to find out how well the position has been found by each particle. A particle that has a high fitness value indicates that the position of the particle is close to the optimal solution. The higher the fitness value of a particle, the closer the particle position to the optimal solution. The fitness value can be obtained after applying the values of a particle to the parameters used in AIRS. AIRS will conduct a training process using these parameters. After the training process is done, the test process will be performed by calculating the suitability of the classification result with the actual class data. Therefore, the fitness value will be calculated using the accuracy, as shown in ACC. Moreover, the performances of the methods are evaluated using the other metrics such as precision, recall, and F-Measure, which are indicated as PRE, REC, and FM.

$$ \Big\{{\displaystyle \begin{array}{l}\mathrm{ACC}=\frac{\mathrm{TP}+\mathrm{TN}}{\mathrm{TP}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN}}\&\mathrm{PRE}=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}\\ {}\mathrm{REC}=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}}\&\mathrm{FM}=\frac{2\times \mathrm{PRE}\times \mathrm{REC}}{\mathrm{PRE}+\mathrm{REC}}\end{array}} $$

where, True Positive (TP) is the value obtained when the actual class of the data was 1 (Success) and the predicted was also 1 (Success), True Negative (TN) is the value obtained when the actual class of the data was 0 (Failed) and the predicted was 0 (Failed), False Positive (FP) is the value obtained when the actual class of the data was 0 (Failed) and the predicted was 1 (Success), False Negative (FN) is the value obtained when the actual class of the data was 1 (Success) and the predicted was 0 (Failed).

Appendix 4

Table 10 The initial results obtained by using the AIRS algorithm applied on the two original data sets

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdar, M., Wijayaningrum, V.N., Hussain, S. et al. IAPSO-AIRS: A novel improved machine learning-based system for wart disease treatment. J Med Syst 43, 220 (2019). https://doi.org/10.1007/s10916-019-1343-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1343-0

Keywords

Navigation