Skip to main content
Log in

Decision Tree Predictive Learner-Based Approach for False Alarm Detection in ICU

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In this work, a novel method has been proposed for false alarm detection in Intensive Care Unit (ICU) during arrhythmia. To detect false alarm, various inputs are used such as electrocardiogram (ECG) signals, atrial blood pressure (ABP), photoplethysmogram signals (PLETH) and respiration (RESP). The inputs are given to decision tree predictive learner (DTPL) based classifier for thedetection of false alarm. The proposed method has an accuracy of 97% for prediction of false alarm in ICU. Theresult of the proposed method is promising which suggest that it can be used effectively for false alarm detection in ICUs. To the best of our knowledge, there is no such assumption based classification approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amadu, A. M., Baritussio, A., Dastidar, A. G., Garate, E. D., Rodrigues, J. C. L., Biglino, G., Lyen, S., Diab, I., Duncan, E., Nisbet, A., Thomas, G., Angelini, G. D., and Bucciarelli-Ducci, C., Arrhythmogenic right ventricular cardiomyopathy (ARVC) mimics: The knot unravelled by cardiovascular MRI. Clin. Radiol. 74:228–234, 2019. https://doi.org/10.1016/j.crad.2018.12.002.

    Article  CAS  PubMed  Google Scholar 

  2. Desai, R., Patel, U. K., Singh, S., Bhuva, R. K., Fong, H. K., Nunna, P., Zalavadia, D., Dave, H., Savani, S., and Doshi, R. K., The burdenand impact of arrhythmia in chronic obstructive pulmonary disease: Insights from the National Inpatient Sample. Int. J. Cardiol. 281:49–55, 2019. https://doi.org/10.1016/j.ijcard.2019.01.074.

    Article  PubMed  Google Scholar 

  3. Zaghla, H., Atroush, H. A., Samir, A., and Kamal, M., Arrhythmias in patients with chronic obstructive pulmonary disease. Egypt J. Chest. Dis. Tubercul. 62:377–385, 2013. https://doi.org/10.1016/j.ejcdt.2013.05.005.

    Article  Google Scholar 

  4. Chugh, S. S., Rothy, G. A., Gillumx, R. F., and Mensah, G. A., Global burden of atrial fibrillation in developed and developing nations. Global Heart 9:113–119, 2014. https://doi.org/10.1016/j.gheart.2014.01.004.

    Article  PubMed  Google Scholar 

  5. Rosa, S. A., Cunha, P. S., Lousinha, A., Valente, B., Delgado, A. S., Pimenta, R., Bras, M., Cruz, M. C., Portugal, G., Monteiro, A. V., Oliveira, M., and Ferreira, R. C., Importance of monitoring zones in the detection ofarrhythmias in patients with implantablecardioverter-defibrillators under remote monitoring. Revista Portuguesa de Cardiologia. 38:11–16, 2019. https://doi.org/10.1016/j.repc.2018.05.015.

    Article  Google Scholar 

  6. Daluwatte, C., Vicente, J., Galeotti, L., Johannesen, L., Strauss, D. D. G., and Scully, D. C. G., A novel ECG detector performance metric and its relationship with missing and false heart rate limit alarms. J. Electrocardiol. 5:68–73, 2018. https://doi.org/10.1016/j.jelectrocard.2017.08.030.

    Article  Google Scholar 

  7. Siebig, S., Kuhls, S., Imhoff, M., Langgartner, J., Reng, M., Scholmerich, J., Gather, U., and Wrede, C. E., Collection of annotated data in a clinical validation study for alarm algorithms in intensive care—A methodologic framework. J. Critic. Care 25:128–135, 2010. https://doi.org/10.1016/j.jcrc.2008.09.001.

    Article  Google Scholar 

  8. Solet, J. M., and Barach, P. R., Managing alarm fatigue in cardiac care. Progress Pediatr. Cardiol. 33:85–90, 2012. https://doi.org/10.1016/j.ppedcard.2011.12.014.

    Article  Google Scholar 

  9. Hu, X., Sapo, M., Nenov, V., Barry, T., Kim, S., Do, D. H., Boyle, N., and Martin, N., Predictive combinations of monitor alarms preceding in-hospital code blue events. J. Biomed. Inform. 45:913–921, 2012. https://doi.org/10.1016/j.jbi.2012.03.001.

    Article  PubMed  Google Scholar 

  10. Li, Q., and Clifford, G. D., Signal quality and data fusion for false alarm reduction in the intensive care unit. J. Electrocardiol. 45:596–603, 2012. https://doi.org/10.1016/j.jelectrocard.2012.07.015.

    Article  PubMed  Google Scholar 

  11. Clifford, G. D., Silva, I., Moody, B., Li, Q., Kella, D., Shahin, A., Kooistra, T., and Perry, D., Mark RG (2015) the PhysioNet/computing in cardiology challenge 2015: Reducing false arrhythmia alarms in the ICU. Comput. Cardiol. 42:273–276, 2015.

    Google Scholar 

  12. Fallet, S., and Yazdani, S., Vesin JM (2015) a multimodal approach to reduce false arrhythmia alarms in the intensive care unit. Comput. Cardiol. 42:277–280, 2015.

    Google Scholar 

  13. Plesinger, F., Klimes, P., and Halamek, J., Jurak P (2015) false alarms in intensive care unit monitors: Detection of life-threatening arrhythmias using elementary algebra, descriptive statistics and fuzzy logic. Comput. Cardiol. 42:281–284, 2015.

    Google Scholar 

  14. Zong, W., Reduction of false critical ECG alarms using waveform features of arterial blood pressure and/or Photoplethysmogram signals. Comput. Cardiol. 42:289–292, 2015.

    Google Scholar 

  15. Eerikainen, L. M., Vanschoren, J., Rooijakkers, M. J., Vullings, R., and Aarts, R. M., Decreasing the false alarm rate of arrhythmias in intensive care using a machine learning approach. Comput. Cardiol. 42:293–296, 2015.

    Google Scholar 

  16. Roonizi, E. K., and Sassi, R., A signal decomposition model-based Bayesian framework for ECG components separation. IEEE Trans. Signal Process. 64:665–674, 2016. https://doi.org/10.1109/TSP.2015.2489598.

    Article  Google Scholar 

  17. Jain, S. K., and Bhaumik, B., An energy efficient ECG signal processor detecting cardiovascular diseases on smartphone. IEEE Trans. Biomed. Circ. Syst. 11:314–323, 2017. https://doi.org/10.1109/TBCAS.2016.2592382.

    Article  Google Scholar 

  18. Satija, U., and Manikandan, S. M., Automated ECG noise detection and classification system for unsupervised healthcare monitoring. IEEE J. Biomed. Health Inform. 22:722–732, 2018. https://doi.org/10.1109/JBHI.2017.2686436.

    Article  PubMed  Google Scholar 

  19. Quiroz-Juárez, M. A., Jiménez-Ramírez, O., Vázquez-Medina, R., Ryzhii, E., and Ryzhii, M., Cardiac conduction model for generating 12 Lead ECG signals with realistic heart rate dynamics. IEEE Trans. Nanobiosci. 17:525–532, 2018. https://doi.org/10.1109/TNB.2018.2870331.

    Article  Google Scholar 

  20. Liu, F., Liu, C., Zhao, L., Jiang, X., Zhang, Z., Li, J., Wei, S., and Zhang, Y., Dynamic ECG signal quality evaluation based on the generalized bSQI index. IEEE Access 6:41892–41902, 2018. https://doi.org/10.1109/ACCESS.2018.2860056.

    Article  Google Scholar 

  21. Qu, Y. R., and Prasanna, V. K., Compact hash tables for decision-trees. Parallel Comput. 54:121–127, 2016. https://doi.org/10.1016/j.parco.2015.12.003.

    Article  Google Scholar 

  22. Saettler, A., Laber, E., and Pereira, F. A. M., Decision tree classification with bounded number of errors. Inform. Process. Lett. 127:27–31, 2017. https://doi.org/10.1016/j.ipl.2017.06.011.

    Article  Google Scholar 

  23. Liua, X., Lia, Q., Lib, T., and Chen, D., Differentially private classification with decision tree ensemble. Appl Soft Comput. 62:807–816, 2018. https://doi.org/10.1016/j.asoc.2017.09.010.

    Article  Google Scholar 

  24. Wang, X., Liu, X., Pedrycz, W., and Zhang, L., Fuzzy rule based decision trees. Pattern Recogn. 48:50–59, 2015. https://doi.org/10.1016/j.patcog.2014.08.001.

    Article  Google Scholar 

  25. Chen, Y. L., Wu, C. C., and Tang, K., Time-constrained cost-sensitive decision tree induction. Inform. Sci. 354:140–152, 2016. https://doi.org/10.1016/j.ins.2016.03.022.

    Article  Google Scholar 

  26. Serackis, A., and Abromavicius, V., Gudiskis a (2015) identification of ECG signal pattern changes to reduce the incidence of ventricular tachycardia false alarms. Comput. Cardiol. 42:1193–1196, 2015.

    Google Scholar 

  27. Caballero, M., and Mirsky, G. M., Reduction of false cardiac arrhythmia alarms through the use of machine learning techniques. Comput. Cardiol. 42:1169–1172, 2015.

    Google Scholar 

  28. Lee, K., Choi, H. O., Min, S. D., Lee, J., and Gupta, B. B., A comparative evaluation of atrial fibrillation detection methods in Koreans based on optical recordings using a smartphone. IEEE Access 5:11437–11434, 2017. https://doi.org/10.1109/ACCESS.2017.2700488.

    Article  Google Scholar 

  29. Acharya, U. R., Fujita, H., Lih, O. S., Hagiwara, Y., Tan, J. H., and Adam, M., Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inform. Sci. 405:81–90, 2017. https://doi.org/10.1016/j.ins.2017.04.012.

    Article  Google Scholar 

  30. Daluwatte, C., Johannesen, L., Vicente, J., Scully, C. G., and Galeotti, L., Strauss DG (2015) heartbeat fusion algorithm to reduce false alarms for arrhythmias. Comput. Cardiol. 42:745–748, 2015.

    Google Scholar 

  31. Baloglu, U. B., Talo, M., Yildirim, O., San Tan, R., and Acharya, U. R., Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recogn. Lett. 122:23–30, 2019. https://doi.org/10.1016/j.patrec.2019.02.016.

    Article  Google Scholar 

  32. Yıldırım, O., Pławiak, P., Tan, R. S., and Acharya, U. R., Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput. Biol. Med. 102:411–420, 2018. https://doi.org/10.1016/j.compbiomed.2018.09.009.

    Article  PubMed  Google Scholar 

  33. Yildirim, O., A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput. Biol. Med. 96:189–202, 2018. https://doi.org/10.1016/j.compbiomed.2018.03.016.

    Article  PubMed  Google Scholar 

  34. Pławiak, P., and Acharya, U.R., Novel Deep Genetic Ensemble of Classifiers for Arrhythmia Detection Using ECG Signals. 2019. doi: https://doi.org/10.1007/s00521-018-03980-2.

  35. Pławiak, P., Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals. Swarm Evol. Comput. 39:192–208, 2018. https://doi.org/10.1016/j.swevo.2017.10.002.

    Article  Google Scholar 

  36. Han, J., Kamber, M., and Pei, J., (Third edition) data mining concepts and techniques. Morgan Kaufmann.

  37. Salvetti, A., Personal view: A centenary of clinical blood pressure measurement: A tribute to Scipione Riva-Rocci. Blood Press. 5:325–326, 1996.

    Article  CAS  Google Scholar 

  38. Mukkamala, R., Hahn, J. O., Inan, O. T., Mestha, L. K., Kim, C. S., Toreyin, H., and Kyal, S., Toward ubiquitous blood pressure monitoring via pulse transit time: Theory and practice. IEEE Trans. Bio-Med. Eng. 62:1879–1901, 2015.

    Article  Google Scholar 

  39. Messas, E., Pernot, M., and Couade, M., Arterial wall elasticity: State of the art and future prospects. Diagn. Interv. Imaging 94:561–569, 2013.

    Article  CAS  Google Scholar 

  40. Ding, X. R., Zhang, Y. T., Liu, J., Dai, W. X., and Tsang, H. K., Continuous Cuffless blood pressure estimation using pulse transit time and Photoplethysmogram intensity ratio. IEEE Trans. Bio-Med. Eng. 63:964–972, 2016.

    Article  Google Scholar 

  41. Poleszczuk, J., Debowska, M., Dabrowski, W., Wojcik-Zaluska, A., Zaluska, W., and Waniewski, J., Subject-specific pulse wave propagation modeling: Towards enhancement of cardiovascular assessment methods. PLoS ONE 13, 2018. doi: https://doi.org/10.1371/journal.pone.0190972.

    Article  Google Scholar 

  42. Yoon, Y. Z., Kang, J. M., Kwon, Y., Park, S., Noh, S., Kim, Y., Park, J., and Hwang, S. W., Cuff-less blood pressure estimation using pulse waveform analysis and pulse arrival time. IEEE J. Biomed. Heal. Inf. 22:1068–1074, 2018.

    Article  Google Scholar 

  43. Xing, X., and Sun, M., Optical blood pressure estimation with photoplethysmography and FFT-based neuralnetworks. Biomed. Opt. Express 7:3007–3020, 2016.

    Article  CAS  Google Scholar 

  44. Li, Y., Wang, Z., Zhang, L., Yang, X., and Song, J., Characters available in photoplethysmogram for blood pressure estimation: Beyond the pulse transit time. Australas. Phys. Eng. Sci. Med 37:367–376, 2014.

    Article  Google Scholar 

  45. Ding, X., Yan, B. P., Zhang, Y. T., Liu, J., Zhao, N., and Tsang, H. K., Pulse transit time based continuous cufflessblood pressure estimation: A new extension and a comprehensive evaluation. Sci. Rep. 7:11554, 2017. https://doi.org/10.1038/s41598-017-11507-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rundo, F., Ortis, A., Battiato, S., and Conoci, S., Advanced bio-inspired system for noninvasive cuff-less bloodpressure estimation from physiological signal analysis. Computation 6:46, 2018. https://doi.org/10.3390/computation6030046.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleena Swetapadma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, T., Swetapadma, A. & Abdar, M. Decision Tree Predictive Learner-Based Approach for False Alarm Detection in ICU. J Med Syst 43, 191 (2019). https://doi.org/10.1007/s10916-019-1337-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1337-y

Keywords

Navigation