Skip to main content
Log in

Implicit Multiderivative Collocation Solvers for Linear Partial Differential Equations with Discontinuous Galerkin Spatial Discretizations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we construct novel discretizations for the unsteady convection–diffusion equation. Our discretization relies on multiderivative time integrators together with a novel discretization that reduces the total number of unkowns for the solver. These type of temporal discretizations come from an umbrella class of methods that include Lax–Wendroff (Taylor) as well as Runge–Kutta methods as special cases. We include two-point collocation methods with multiple time derivatives as well as a sixth-order fully implicit collocation method that only requires a total of three stages. Numerical results for a number of sample linear problems indicate the expected order of accuracy and indicate we can take arbitrarily large time steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Al-Rabeh, A.H.: Embedded DIRK methods for the numerical integration of stiff systems of ODEs. Int. J. Comput. Math. 21, 65–84 (1987)

    Article  MATH  Google Scholar 

  2. Alexander, R.: Diagonally implicit Runge–Kutta methods for stiff O.D.E’.s. SIAM J. Numer. Anal. 14, 1006–1021 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Balay, S.,Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Technical report ANL-95/11 - Revision 3.1, Argonne National Laboratory (2010)

  5. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc web page (2011). http://www.mcs.anl.gov/petsc

  6. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press, Boston (1997)

    Chapter  Google Scholar 

  7. Balsara, D.S., Kim, J.: A subluminal relativistic magnetohydrodynamics scheme with ADER-WENO predictor and multidimensional Riemann solver-based corrector. J. Comput. Phys. 312, 357–384 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  8. Butcher, J.: General linear methods. Acta Numer. 15, 157–256 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Butcher, J.C.: Implicit Runge–Kutta processes. Math. Comput. 18, 50–64 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  10. Butcher, J.C.: On the convergence of numerical solutions to ordinary differential equations. Math. Comput. 20(93), 1–10 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cash, J.: Diagonally implicit Runge–Kutta formulae with error estimates. J. Inst. Math. Appl. 24, 293–301 (1979)

    Article  MATH  Google Scholar 

  12. Christlieb, A.J., Feng, X., Seal, D.C., Tang, Q.: A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations. J. Computat. Phys. 316, 218–242 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  13. Christlieb, A.J., Gottlieb, S., Grant, Z., Seal, D.C.: Explicit strong stability preserving multistage two-derivative time-stepping schemes. J. Sci. Comput. 68(3), 914–942 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  14. Christlieb, A.J., Güçlü, Y., Seal, D.C.: The Picard integral formulation of weighted essentially nonoscillatory schemes. SIAM J. Numer. Anal. 53(4), 1833–1856 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. J. Comput. Phys. 314, 824–862 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ehle, B.L.: High order \(A\)-stable methods for the numerical solution of systems of D.E’.s. BIT Numer. Math. 8, 276–278 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ehle, B.L.: \(A\)-stable methods and Padé approximations to the exponential. SIAM J. Math. Anal. 4, 671–680 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  18. Enright, W.H.: Second derivative multistep methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 11, 321–331 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gekeler, E., Widmann, R.: On the order conditions of Runge–Kutta methods with higher derivatives. Numer. Math. 50, 183–203 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gekeler, E.W.: On implicit Runge–Kutta methods with higher derivatives. BIT Numer. Math. 28, 809–816 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Genin, Y.: An algebraic approach to \(A\)-stable linear multistep-multiderivative integration formulas. BIT Numer. Math. 14, 382–406 (1974)

    Article  MATH  Google Scholar 

  22. Guo, W., Qiu, J.-M., Qiu, J.: A new Lax–Wendroff discontinuous Galerkin method with superconvergence. J. Sci. Comput. 65(1), 299–326 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hairer, E., Wanner, G.: Multistep-multistage-multiderivative methods for ordinary differential equations. Computing 11(3), 287–303 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer Series in Computational Mathematics. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  25. Harten, A., Enquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Houston, P., Schwab, C., Süli, E.: Discontinuous \(hp\)-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39, 2133–2163 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Houston, P., Süli, E.: hp-adaptive discontinuous Galerkin finite element methods for first order hyperbolic problems. SIAM J. Sci. Comput. 23, 1226–1252 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jaust, A., Schütz, J., Seal, D.C.: Implicit multistage two-derivative discontinuous Galerkin schemes for viscous conservation laws. J. Sci. Comput. 69, 866–891 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jeltsch, R.: A necessary condition for \(A\)-stability of multistep multiderivative methods. Math. Comput. 30(136), 739–746 (1976)

    MATH  MathSciNet  Google Scholar 

  30. Jiang, Y., Shu, C.-W., Zhang, M.: An alternative formulation of finite difference weighted ENO schemes with Lax–Wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35(2), A1137–A1160 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kastlunger, K., Wanner, G.: On Turan type implicit Runge–Kutta methods. Computing 9, 317–325 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lax, P., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13(2), 217–237 (1960)

    Article  MATH  Google Scholar 

  33. Li, J., Du, Z.: A two-stage fourth order time-accurate discretization for Lax–Wendroff type flow solvers I. Hyperbolic conservation laws. SIAM J. Sci. Comput. 38(5), A3046–A3069 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  34. Meir, A., Sharma, A.: An extension of Obreshkov’s formula. SIAM J. Numer. Anal. 5, 488–490 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  35. Moe, S.A., Rossmanith, J.A., Seal, D.C.: Positivity-preserving discontinuous Galerkin methods with Lax–Wendroff time discretizations. J. Sci. Comput. 71(1), 44–70 (2017)

  36. Mühlbach, G.: An algorithmic approach to Hermite–Birkhoff-interpolation. Numer. Math. 37, 339–347 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  37. Pan, L. Li, J., Xu, K.: A few benchmark test cases for higher-order Euler solvers (2016). arXiv:1609.04491

  38. Pan, L., Xu, K., Li, Q., Li, J.: An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Euler and Navier–Stokes equations. J. Comput. Phys. 326, 197–221 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  39. Qiu, J., Dumbser, M., Shu, C.-W.: The discontinuous Galerkin method with Lax–Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194(42–44), 4528–4543 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Qiu, J., Shu, C.-W.: Finite difference WENO schemes with Lax–Wendroff-type time discretizations. SIAM J. Sci. Comput. 24(6), 2185–2198 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. Rappaport, K.D.: S. Kovalevsky: a mathematical lesson. Am. Math. Mon. 88(8), 564–574 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  42. Rosen, J. S.: Numerical solution of differential equations using Obrechkoff corrector formulas. Technical Note M527, Institute for Computer Applications in Science and Engineering, George C. Marshall Space Flight Center, Marshall, AL (1969)

  43. Schöberl, J.: Netgen—an advancing front 2d/3d-mesh generator based on abstract rules. Comput. Vis. Sci. 1, 41–52 (1997)

    Article  MATH  Google Scholar 

  44. Schoenberg, I.J.: On Hermite-Birkhoff interpolation. J. Math. Anal. Appl. 16, 538–543 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  45. Seal, D.C., Güçlü, Y., Christlieb, A.: High-order multiderivative time integrators for hyperbolic conservation laws. J. Sci. Comput. 60, 101–140 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  46. Seal, D.C., Tang, Q., Xu, Z., Christlieb, A.J.: An explicit high-order single-stage single-step positivity-preserving finite difference WENO method for the compressible Euler equations. J. Sci. Comput. 68(1), 171–190 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  47. Stroud, A.H., Stancu, D.D.: Quadrature formulas with multiple Gaussian nodes. SIAM J. Numer. Anal. 2, 129–143 (1965)

    MATH  MathSciNet  Google Scholar 

  48. Toro, E.F., Titarev, V. A.: Solution of the generalized Riemann problem for advection-reaction equations. In: Proceedings: Mathematical, Physical and Engineering Sciences, vol. 458, no. 2018, pp. 271–281 (2002)

  49. Tsai, A., Chan, R., Wang, S.: Two-derivative Runge–Kutta methods for PDEs using a novel discretization approach. Numer. Algorithms 65, 687–703 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  50. Vos, P.E., Eskilsson, C., Bolis, A., Chun, S., Kirby, R.M., Sherwin, S.J.: A generic framework for time-stepping partial differential equations (PDEs): general linear methods, object-oriented implementation and application to fluid problems. Int. J. Comput. Fluid Dyn. 25(3), 107–125 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  51. Yakubu, D., Kwami, A.: Implicit two-derivative Runge–Kutta collocation methods for systems of initial value problems. J. Niger. Math, Soc. 34, 128–142 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  52. Zanotti, O., Fambri, F., Dumbser, M., Hidalgo, A.: Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting. Comput. Fluids 118, 204–224 (2015)

    Article  MathSciNet  Google Scholar 

  53. Zorío, D., Baeza, A., Mulet, P.: An approximate Lax–Wendroff-type procedure for high order accurate schemes for hyperbolic conservation laws. J. Sci. Comput. 71, 246–273 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

D. Seal acknowledges funding by the Naval Academy Research Council. The study of A. Jaust was supported by the Special Research Fund (BOF) of Hasselt University (Grant No. BOF16DOC02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Schütz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schütz, J., Seal, D.C. & Jaust, A. Implicit Multiderivative Collocation Solvers for Linear Partial Differential Equations with Discontinuous Galerkin Spatial Discretizations. J Sci Comput 73, 1145–1163 (2017). https://doi.org/10.1007/s10915-017-0485-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0485-9

Keywords

Navigation