Skip to main content
Log in

Source Estimation by Full Wave Form Inversion

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider the inverse problem of estimating the parameters describing the source in a seismic event, using time-dependent ground motion recordings at a number of receiver stations. The inverse problem is defined in terms of a full waveform misfit functional, where the objective function is the integral over time of the weighted \(L_2\) distance between observed and synthetic ground motions, summed over all receiver stations. The misfit functional is minimized under the constraint that the synthetic ground motion is governed by the elastic wave equation in a heterogeneous isotropic material. The seismic source is modeled as a point moment tensor forcing in the elastic wave equation. The source is described by 11 parameters: the six unique components of the symmetric moment tensor, the three components of the source location, the origin time, and a frequency parameter modeling the duration of the seismic event. The synthetic ground motions are obtained as the solution of a fourth order accurate finite difference approximation of the elastic wave equation in a heterogeneous isotropic material. The discretization satisfies a summation-by-parts (SBP) property that ensures stability of the explicit time-stepping scheme. We use the SBP property to derive the discrete adjoint of the finite difference method, which is used to efficiently compute the gradient of the misfit. A new moment tensor source discretization is derived that is twice continuously differentiable with respect to the source location. The differentiability makes the Hessian of the misfit a continuous function of all source parameters. We compare four different gradient-based approaches for solving the constrained minimization problem; two non-linear conjugate gradient methods (Fletcher–Reeves and Polak–Ribière), and two quasi-Newton methods (BFGS and L-BFGS). Because the Hessian of the misfit has a very large condition number, the parameters must be scaled before the minimization problem can be solved. Comparing several scaling approaches, we find that the diagonal of the Hessian provides the most reliable scaling alternative. Numerical experiments are presented for estimating the source parameters from synthetic ground motions in two different three-dimensional models; one in a simple layer over half-space, and one using a fully heterogeneous material. Good convergence properties are demonstrated in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aki, K., Richards, P.G.: Quantitative Seismology, 2nd edn. University Science Books, Sausalito (2002)

    Google Scholar 

  2. Appelö, D., Colonius, T.: A high order super-grid-scale absorbing layer and its application to linear hyperbolic systems. J. Comput. Phys. 228, 4200–4217 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Appelö, D., Petersson, N.A.: A stable finite difference method for the elastic wave equation on complex geometries with free surfaces. Commun. Comput. Phys. 5, 84–107 (2008)

    Google Scholar 

  4. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cohen, G., Fauqueux, S.: Mixed spectral finite elements for the linear elasticity system in unbounded domains. SIAM J. Sci. Comput. 26(3), 864–884 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Day, S.M., Bielak, J., Dreger, D., Larsen, S., Graves, R., Pitarka, A., Olsen, K.B.: Test of 3D elastodynamic codes: lifelines project task 1A01. Technical report, Pacific Earthquake Engineering Center (2001)

  7. Dennis Jr, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  8. Dumbser, M., Käser, M.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—II. The three-dimensional isotropic case. Geophys. J. Int. 167(1), 319–336 (2006)

    Article  Google Scholar 

  9. Dumbser, M., Käser, M., de la Puente, J.: Arbitrary high-order finite volume schemes for seismic wave propagation on unstructured meshes in 2D and 3D. Geophys. J. Int. 171(2), 665–694 (2007)

    Article  Google Scholar 

  10. Duputel, Z., Rivera, L., Fukahata, Y., Kanamori, H.: Uncertainty estimations for seismic source inversions. Geophys. J. Int. 190, 1243–1256 (2012)

    Article  Google Scholar 

  11. Fichtner, A.: Full Waveform Modelling and Inversion. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin (2011)

    Google Scholar 

  12. Graves, R.W.: Simulating seismic-wave propagation in 3-D elastic media using staggered-grid finite differences. Bull. Seismo. Soc. Am. 86(4), 1091–1106 (1996)

    MathSciNet  Google Scholar 

  13. Jameson, A.: Aerodynamic design via control theory. J. Sci. Comput. 3(3), 233–260 (1988)

    Article  MATH  Google Scholar 

  14. Käser, M., Dumbser, M.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—I. The two-dimensional isotropic case with external source terms. Geophys. J. Int. 166(2), 855–877 (2006)

    Article  Google Scholar 

  15. Kim, Y.H., Liu, Q., Tromp, J.: Adjoint centroid-moment tensor inversions. Geophys. J. Int. 186(1), 264–278 (2011)

    Article  Google Scholar 

  16. King, G.E.: Hydraulic fracturing 101: what every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor and engineer should know about estimating frac risk and improving frac performance in unconventional gas and oil wells. Society of Petroleum Engineers, Feb (2012). SPE 152596

  17. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Komatitsch, D., Tromp, J.: Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 139, 806–822 (1999)

    Article  Google Scholar 

  19. Lailly, P.: The seismic inverse problem as a sequence of before stack migrations. In: Bednar, J.B. (eds) Conference on Inverse scattering: Theory and Applications, pp. 206–220. Society of Industrial and Applied Mathematics, Philadelphia, PA (1983)

  20. Levander, A.R.: Fourth-order finite-difference P-SV seismograms. Geophysics 53, 1425–1436 (1988)

    Article  Google Scholar 

  21. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  22. Liu, Q., Polet, J., Komatitsch, D., Tromp, J.: Spectral-element moment tensor inversions for earthquakes in southern California. Bull. Seismo. Soc. Am. 94(5), 1748–1761 (2004)

    Article  Google Scholar 

  23. Luenberger, D.G.: Introduction to Linear and Nonlinear Programming. Addison-Wesley, Reading (1973)

    MATH  Google Scholar 

  24. Nilsson, S., Petersson, N.A., Sjögreen, B., Kreiss, H.-O.: Stable difference approximations for the elastic wave equation in second order formulation. SIAM J. Numer. Anal. 45, 1902–1936 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nocecdal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  26. Petersson, N.A., Sjögreen, B.: Stable grid refinement and singular source discretization for seismic wave simulations. Commun. Comput. Phys. 8(5), 1074–1110 (2010)

    Google Scholar 

  27. Petersson, N. A., Sjögreen, B.: Super-grid modeling of the elastic wave equation in semi-bounded domains. LLNL-JRNL 610212, Lawrence Livermore National Laboratory (2013). (submitted to Comm. Comput. Phys.)

  28. Petersson, N.A., Sjogreen, B.: User’s guide to SW4, version 1.0. LLNL-SM-xxyy, Lawrence Livermore National Laboratory (2013)

  29. Pironneau, O.: On optimum design in fluid mechanics. J. Fluid Mech. 64, 97–110 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  30. Plessix, R.E.: A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys. J. Int. 167, 495–503 (2006)

    Article  Google Scholar 

  31. Sjögreen, B., Petersson, N.A.: A fourth order accurate finite difference scheme for the elastic wave equation in second order formulation. J. Sci. Comput. 52, 17–48 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Skelton, E.A., Adams, S.D.M., Craster, R.V.: Guided elastic waves and perfectly matched layers. Wave Motion 44, 573–592 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Song, F., Toksöz, M.N.: Full-waveform based complete moment tensor inversion and source parameter estimation from downhole seismic data for hydrofracture monitoring. Geophysics 76(6), WC103–WC116 (2011)

    Article  Google Scholar 

  34. Tape, C., Liu, Q., Tromp, J.: Finite-frequency tomography using adjoint methods - Methodology and examples using membrane surface waves. Geophys. J. Int. 168, 1105–1129 (2007)

    Article  Google Scholar 

  35. Tarantola, A.: Inversion of seismic reflection data in the acoustic approximation. Geophysics 49, 1259–1266 (1984)

    Article  Google Scholar 

  36. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  37. Tromp, J., Komatitsch, D., Liu, Q.: Spectral-element and adjoint methods in seismology. Commun. Comput. Phys. 3, 1–32 (2008)

    MATH  Google Scholar 

  38. Tromp, J., Tape, C., Liu, Q.: Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys. J. Int. 160, 195–216 (2005)

    Article  Google Scholar 

  39. Virieux, J.: P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51, 889–901 (1986)

    Article  Google Scholar 

  40. Virieux, J., Operto, S.: An overview of full-waveform inversion in exploration geophysics. Geophysics 74(6), WCC127–WCC152 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Sjögreen.

Additional information

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This is contribution LLNL-JRNL-573912.

Appendix 1: Proof of Theorem 1

Appendix 1: Proof of Theorem 1

We start by expanding the predictor into the corrector in Algorithm 1. Then rewrite the resulting expression as

$$\begin{aligned} \rho \frac{\mathbf{u}^{n+1}-2\mathbf{u}^n+\mathbf{u}^{n-1}}{\Delta _t^2} = \mathbf{L}_h(\mathbf{u}^n) + \mathbf{F}(t_n) + \frac{\Delta _t^2}{12}\bigl (\mathbf{L}_h(\mathbf{v}^n)+\mathbf{F}_{tt}(t_n)\bigr )+\mathbf{S}_G(\mathbf{u}^n-\mathbf{u}^{n-1}). \nonumber \\ \end{aligned}$$
(53)

Next, take the scalar product between (53) and \({\varvec{\kappa }}^n\), and sum over all time steps,

$$\begin{aligned}&\sum \limits _{n=0}^{M-1}\left( {\varvec{\kappa }}^n,\rho \frac{\mathbf{u}^{n+1}-2\mathbf{u}^n+\mathbf{u}^{n-1}}{\Delta _t^2}\right) _h = \sum \limits _{n=0}^{M-1}\left( {\varvec{\kappa }}^n,\mathbf{L}_h(\mathbf{u}^n)\right) _h + \sum \limits _{n=0}^{M-1} \left( {\varvec{\kappa }}^n,\mathbf{F}(t_n) + \frac{\Delta _t^2}{12}\mathbf{F}_{tt}(t_n)\right) _h \nonumber \\&\quad +\frac{\Delta _t^2}{12}\sum \limits _{n=0}^{M-1} \left( {\varvec{\kappa }}^n,\mathbf{L}_h(\mathbf{v}^n)\right) _h + \sum \limits _{n=0}^{M-1}\left( {\varvec{\kappa }}^n,\mathbf{S}_G(\mathbf{u}^n-\mathbf{u}^{n-1})\right) _h. \end{aligned}$$
(54)

The sum on the left hand side of (54) can be rewritten as

$$\begin{aligned}&\sum \limits _{n=0}^{M-1}\left( {\varvec{\kappa }}^n,\rho \frac{\mathbf{u}^{n+1}-2\mathbf{u}^n+\mathbf{u}^{n-1}}{\Delta _t^2}\right) _h =\sum \limits _{n=0}^{M-1}\left( \rho \frac{{\varvec{\kappa }}^{n+1}-2{\varvec{\kappa }}^n+{\varvec{\kappa }}^{n-1}}{\Delta _t^2}, \mathbf{u}^n \right) _h \nonumber \\&\quad +\frac{1}{\Delta _t^2}\left( \left( \rho \mathbf{u}^{-1},{\varvec{\kappa }}^0\right) _h - \left( \rho \mathbf{u}^0,{\varvec{\kappa }}^{-1}\right) _h +\left( \rho \mathbf{u}^M,{\varvec{\kappa }}^{M-1}\right) _h - \left( \rho \mathbf{u}^{M-1},{\varvec{\kappa }}^M\right) _h\right) , \end{aligned}$$
(55)

where the initial data \(\mathbf{u}^0 = \mathbf{u}^{-1} = {\varvec{\kappa }}^M = {\varvec{\kappa }}^{M-1}=\mathbf{0}\) make

$$\begin{aligned} \sum \limits _{n=0}^{M-1}\left( {\varvec{\kappa }}^n,\rho \frac{\mathbf{u}^{n+1}-2\mathbf{u}^n+\mathbf{u}^{n-1}}{\Delta _t^2}\right) _h =\sum \limits _{n=0}^{M-1}\left( \rho \frac{{\varvec{\kappa }}^{n+1}-2{\varvec{\kappa }}^n+{\varvec{\kappa }}^{n-1}}{\Delta _t^2}, \mathbf{u}^n \right) _h. \end{aligned}$$

The first sum on the right hand side of (54) is treated by the self-adjoint property,

$$\begin{aligned} \sum \limits _{n=0}^{M-1}({\varvec{\kappa }}^n,\mathbf{L}_h(\mathbf{u}^n))_h = \sum \limits _{n=0}^{M-1}(\mathbf{L}_h({\varvec{\kappa }}^n),\mathbf{u}^n)_h. \end{aligned}$$

The second last sum of (54) can be rewritten

$$\begin{aligned} ( {\varvec{\kappa }}^n, \mathbf{L}_h(\mathbf{v}^n) )_h&= ( \mathbf{L}_h({\varvec{\kappa }}^n), \mathbf{v}^n )_h = \left( \mathbf{L}_h({\varvec{\kappa }}^n), \frac{1}{\rho }(\mathbf{L}_h(\mathbf{u}^n) + \mathbf{F}(t_n)) \right) _h \nonumber \\&= \left( \mathbf{L}_h({\varvec{\kappa }}^n), \frac{1}{\rho }\mathbf{L}_h(\mathbf{u}^n) \right) _h + \left( \mathbf{L}_h({\varvec{\kappa }}^n), \frac{1}{\rho }\mathbf{F}(t_n) \right) _h \nonumber \\&= \left( \mathbf{L}_h\left( \frac{1}{\rho }\mathbf{L}_h({\varvec{\kappa }}^n)\right) , \mathbf{u}^n \right) _h + \left( \frac{1}{\rho }\mathbf{L}_h({\varvec{\kappa }}^n), \mathbf{F}(t_n) \right) _h\nonumber \\&= (\mathbf{L}_h({\varvec{\zeta }}^n), \mathbf{u}^n )_h + ({\varvec{\zeta }}^n, \mathbf{F}(t_n) )_h. \end{aligned}$$
(56)

The super-grid damping term can be written

$$\begin{aligned}&\sum \limits _{n=0}^{M-1}({\varvec{\kappa }}^n,\mathbf{S}_G(\mathbf{u}^n-\mathbf{u}^{n-1}))_h = \sum \limits _{n=0}^{M-1}({\varvec{\kappa }}^n,\mathbf{S}_G(\mathbf{u}^n))_h - \sum \limits _{n=0}^{M-1}({\varvec{\kappa }}^{n+1},\mathbf{S}_G(\mathbf{u}^n))_h\nonumber \\&\quad -({\varvec{\kappa }}^0,\mathbf{S}_G(\mathbf{u}^{-1}))_h + ({\varvec{\kappa }}^M,\mathbf{S}_G(\mathbf{u}^{M-1}))_h. \end{aligned}$$
(57)

The boundary terms are zero because of the initial data \(\mathbf{u}^{-1}={\varvec{\kappa }}^{M} = 0\), and we use the symmetry (9) to obtain

$$\begin{aligned} \sum \limits _{n=0}^{M-1}({\varvec{\kappa }}^n,\mathbf{S}_G(\mathbf{u}^n-\mathbf{u}^{n-1}))_h = \sum \limits _{n=0}^{M-1}({\varvec{\kappa }}^n-{\varvec{\kappa }}^{n+1},\mathbf{S}_G(\mathbf{u}^n))_h = -\sum \limits _{n=0}^{M-1}(\mathbf{S}_G({\varvec{\kappa }}^{n+1}-{\varvec{\kappa }}^{n}),\mathbf{u}^n)_h \end{aligned}$$

Collecting terms gives that (54) is equivalent to

$$\begin{aligned}&\sum \limits _{n=0}^{M-1}\left( \rho \frac{{\varvec{\kappa }}^{n+1}-2{\varvec{\kappa }}^n+{\varvec{\kappa }}^{n-1}}{\Delta _t^2}, \mathbf{u}^n \right) _h = \sum \limits _{n=0}^{M-1}(\mathbf{L}_h({\varvec{\kappa }}^n),\mathbf{u}^n)_h + \sum \limits _{n=0}^{M-1} \left( {\varvec{\kappa }}^n,\mathbf{F}(t_n) + \frac{\Delta _t^2}{12}\mathbf{F}_{tt}(t_n)\right) _h \nonumber \\&\quad +\frac{\Delta _t^2}{12}\sum \limits _{n=0}^{M-1} (\mathbf{L}_h({\varvec{\zeta }}^n), \mathbf{u}^n )_h + \frac{\Delta _t^2}{12}\sum \limits _{n=0}^{M-1}({\varvec{\zeta }}^n,\mathbf{F}(t_n))_h -\sum \limits _{n=0}^{M-1}(\mathbf{S}_G({\varvec{\kappa }}^{n+1}-{\varvec{\kappa }}^{n}),\mathbf{u}^n)_h. \end{aligned}$$
(58)

Expanding the predictor (11) into the corrector (12) gives

$$\begin{aligned} \rho \frac{{\varvec{\kappa }}^{n+1}-2{\varvec{\kappa }}^n+{\varvec{\kappa }}^{n-1}}{\Delta _t^2} = \mathbf{L}_h({\varvec{\kappa }}^n) + \mathbf{G}(t_n) + \frac{\Delta _t^2}{12}\mathbf{L}_h({\varvec{\zeta }}^n) - \mathbf{S}_G({\varvec{\kappa }}^{n+1}-{\varvec{\kappa }}^n). \end{aligned}$$
(59)

Identity (13) of Theorem 1 is obtained by inserting (59) into the left hand side of (58).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjögreen, B., Petersson, N.A. Source Estimation by Full Wave Form Inversion. J Sci Comput 59, 247–276 (2014). https://doi.org/10.1007/s10915-013-9760-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9760-6

Keywords

Navigation