Skip to main content
Log in

A Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a fourth order accurate finite difference method for the elastic wave equation in second order formulation, where the fourth order accuracy holds in both space and time. The key ingredient of the method is a boundary modified fourth order accurate discretization of the second derivative with variable coefficient, (μ(x)u x ) x . This discretization satisfies a summation by parts identity that guarantees stability of the scheme. The boundary conditions are enforced through ghost points, thereby avoiding projections or penalty terms, which often are used with previous summation by parts operators. The temporal discretization is obtained by an explicit modified equation method. Numerical examples with free surface boundary conditions show that the scheme is stable for CFL-numbers up to 1.3, and demonstrate a significant improvement in efficiency over the second order accurate method. The new discretization of (μ(x)u x ) x has general applicability, and will enable stable fourth order accurate approximations of other partial differential equations as well as the elastic wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Appelö, D., Petersson, N.A.: A stable finite difference method for the elastic wave equation on complex geometries with free surfaces. Commun. Comput. Phys. 5, 84–107 (2009)

    MathSciNet  Google Scholar 

  2. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 111, 220–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148, 341–365 (1999)

    Article  MathSciNet  Google Scholar 

  4. Dumbser, M., Käser, M.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes. II. The three-dimensional isotropic case. Geophys. J. Int. 167, 319–336 (2006)

    Article  Google Scholar 

  5. Feng, K.-A., Teng, C.-H., Chen, M.-H.: A pseudospectral penalty scheme for 2D isotropic elastic wave computations. J. Sci. Comput. 33, 313–348 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Graves, R.W.: Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Am. 86, 1091–1106 (1996)

    MathSciNet  Google Scholar 

  7. Gustafsson, B.: The convergence rate for difference approximations to mixed initial boundary value problems. Math. Comput. 29(130), 396–406 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley-Interscience, New York (1995)

    MATH  Google Scholar 

  9. Komatitsch, K., Tromp, J.: Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 139, 806–822 (1999)

    Article  Google Scholar 

  10. Kreiss, H.-O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24, 199–215 (1972)

    Article  MathSciNet  Google Scholar 

  11. Kreiss, H.-O., Petersson, N.A.: Boundary estimates for the elastic wave equation in almost incompressible materials. SIAM J. Numer. Anal. (2011, submitted), LLNL-JRNL-482152

  12. Kreiss, H.-O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press, San Diego (1974)

    Google Scholar 

  13. Levander, A.R.: Fourth-order finite-difference P-SV seismograms. Geophysics 53, 1425–1436 (1988)

    Article  Google Scholar 

  14. Mattson, K.: Summation-by-parts operators for high order finite difference methods. PhD thesis, Uppsala University, Information Technology, Department of Scientific Computing (2003)

  15. Mattsson, K., Svärd, M., Shoeybi, M.: Stable and accurate schemes for the compressible Navier-Stokes equations. J. Comput. Phys. 227, 2293–2316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mattsson, K., Norström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199, 503–540 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nilsson, S., Petersson, N.A., Sjögreen, B., Kreiss, H.-O.: Stable difference approximations for the elastic wave equation in second order formulation. SIAM J. Numer. Anal. 45, 1902–1936 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Petersson, N.A., Sjögreen, B.: An energy absorbing far-field boundary condition for the elastic wave equation. Commun. Comput. Phys. 6, 483–508 (2009)

    Article  MathSciNet  Google Scholar 

  19. Petersson, N.A., Sjögreen, B.: Stable and efficient modeling of anelastic attenuation in seismic wave propagation. Technical Report LLNL-JRNL-460239, Lawrence Livermore National Laboratory, Commun. Comput. Phys. (2010, to appear)

  20. Petersson, N.A., Sjögreen, B.: Stable grid refinement and singular source discretization for seismic wave simulations. Commun. Comput. Phys. 8, 1074–1110 (2010)

    Google Scholar 

  21. Petersson, N.A., Sjögreen, B.: User’s guide to WPP version 2.1. Technical Report LLNL-SM-487431, Lawrence Livermore National Laboratory (2011). (Source code available from https://computation.llnl.gov/casc/serpentine)

  22. Sjögreen, B.: High order centered difference methods for the compressible Navier-Stokes equations. J. Comput. Phys. 117, 67–78 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Strand, B.: Summation by parts for finite difference approximations for d/dx. J. Comput. Phys. 110, 47–67 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Virieux, J.: P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51, 889–901 (1986)

    Article  Google Scholar 

  25. Wilcox, L.C., Stadler, G., Burstedde, C., Ghattas, O.: A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media. J. Comput. Phys. 229, 9373–9396 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Sjögreen.

Additional information

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-483427.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjögreen, B., Petersson, N.A. A Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation. J Sci Comput 52, 17–48 (2012). https://doi.org/10.1007/s10915-011-9531-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9531-1

Keywords

Navigation