Skip to main content

Advertisement

Log in

Bioactive Functions of Milk Proteins: a Comparative Genomics Approach

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The composition of milk includes factors required to provide appropriate nutrition for the growth of the neonate. However, it is now clear that milk has many functions and comprises bioactive molecules that play a central role in regulating developmental processes in the young while providing a protective function for both the suckled young and the mammary gland during the lactation cycle. Identifying these bioactives and their physiological function in eutherians can be difficult and requires extensive screening of milk components that may function to improve well-being and options for prevention and treatment of disease. New animal models with unique reproductive strategies are now becoming increasingly relevant to search for these factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

WFDC2:

WAP Four-disulfide Core Domain 2

MLP:

Monotreme Lactation Protein

AMP:

Antimicrobial Protein

LLP:

Late Lactation Protein

WAP:

Whey Acid Protein

ELP:

Early Lactation Protein

JEOL:

JEM 2100 Transmission Electron Microscopy

NEC:

Necrotizing Enterocolitis

References

  1. Lefevre CM, Sharp JA, Nicholas KR. Evolution of lactation: ancient origin and extreme adaptations of the lactation system. Annu Rev Genomics Hum Genet. 2010;11:219–38.

    CAS  PubMed  Google Scholar 

  2. Blackburn DG. Lactation: historical patterns and potential for manipulation. J Dairy Sci. 1993;76(10):3195–212.

    CAS  PubMed  Google Scholar 

  3. Liao Y, Alvarado R, Phinney B, Lönnerdal B. Proteomic characterization of human milk whey proteins during a twelve-month lactation period. J Proteome Res. 2011;10(4):1746–54.

    CAS  PubMed  Google Scholar 

  4. Donovan SM, Odle J. Growth-factors in milk as mediators of infant development. Annu Rev Nutr. 1994;14:147–67.

    CAS  PubMed  Google Scholar 

  5. Oftedal OT, Iverson SJ. CHAPTER 10—comparative analysis of nonhuman milks: a. Phylogenetic variation in the gross composition of milks. In: Jensen RG, editor. Handbook of milk composition. San Diego: Academic Press; 1995. p. 749–89.

    Google Scholar 

  6. Blum JW, Baumrucker CR. Colostral and milk insulin-like growth factors and related substances: Mammary gland and neonatal (intestinal and systemic) targets. Domest Anim Endocrinol. 2002;23(1–2):101–10.

    CAS  PubMed  Google Scholar 

  7. Wakao H, Gouilleux F, Groner B. Mammary-gland factor (Mgf) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response (Vol 13, Pg 2182, 1994). Embo J. 1995;14(4):854–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Fitzgerald RJ, Meisel H. Milk Protein Hydrolysates and Bioactive Peptides. In: Fox PF, McSweeney PLH, editors. Advanced Dairy Chemistry—1 Proteins. Springer US; 2003. p. 675–98.

  9. Modepalli V, Kumar A, Hinds L, Sharp J, Nicholas K, Lefevre C. Differential temporal expression of milk miRNA during the lactation cycle of the marsupial tammar wallaby (Macropus eugenii). BMC Genomics. 2014;15(1):1012.

    PubMed Central  PubMed  Google Scholar 

  10. Nicholas K, Sharp J, Watt A, Wanyonyi S, Crowley T, Gillespie M, et al. The tammar wallaby: a model system to examine domain-specific delivery of milk protein bioactives. Semin Cell Dev Biol. 2012;23(5):547–56.

    CAS  PubMed  Google Scholar 

  11. Kosaka N, Izumi H, Sekine K, Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence. 2010;1(1):7.

    PubMed Central  PubMed  Google Scholar 

  12. Bösze Z. Bioactive Components of Milk. Springer—Verlag; 2008. p. 395–422.

  13. Oftedal O. The evolution of milk secretion and its ancient origins. Animal. 2012;6(3):355–68.

    CAS  PubMed  Google Scholar 

  14. Peaker M. The mammary gland in mammalian evolution: a brief commentary on some of the concepts. J Mammary Gland Biol Neoplasia. 2002;7(3):347–53.

    PubMed  Google Scholar 

  15. Oftedal O. Origin and Evolution of the Major Constituents of Milk. In: McSweeney PLH, Fox PF, editors. Advanced Dairy Chemistry. Springer US; 2013. p. 1–42.

  16. Schiebinger L. Why mammals are called mammals: gender politics in eighteenth-century natural history. Am Hist Rev. 1993;98(2):382–411.

    CAS  PubMed  Google Scholar 

  17. Séverin S, Wenshui X. Milk biologically active components as nutraceuticals: review. Crit Rev Food Sci Nutr. 2005;45(7–8):645–56.

    PubMed  Google Scholar 

  18. Zimecki M, Kruzel ML. Milk-derived proteins and peptides of potential therapeutic and nutritive value. J Exp Ther Oncol. 2007;6(2):89–106.

    CAS  PubMed  Google Scholar 

  19. Dallas DC, Guerrero A, Khaldi N, Castillo PA, Martin WF, Smilowitz JT, et al. Extensive in vivo human milk peptidomics reveals specific proteolysis yielding protective antimicrobial peptides. J Proteome Res. 2013;12(5):2295–304.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Dallas DC, Guerrero A, Parker EA, Garay LA, Bhandari A, Lebrilla CB, et al. Peptidomic Profile of Milk of Holstein Cows at Peak Lactation. J Agric Food Chem. 2013.

  21. Hettinga K, van Valenberg H, de Vries S, Boeren S, van Hooijdonk T, et al. The host defense proteome of human and bovine milk. PLoS ONE. 2011;6(4):e19433.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Springer M, Krajewski C. Monotremes (Prototheria). The Timetree of life. Eds. (Oxford University Press, 2009), UK; 2009.

  23. Oftedal O. The origin of lactation as a water source for parchment-shelled eggs. J Mammary Gland Biol Neoplasia. 2002;7(3):253–66.

    PubMed  Google Scholar 

  24. Griffiths M. The biology of the monotremes. New York: Academic Press; 1978.

    Google Scholar 

  25. Hawkins M, Battaglia A. Breeding behaviour of the platypus (Ornithorhynchus anatinus) in captivity. Aust J Zool. 2009;57(4):283–93.

    Google Scholar 

  26. Morrow G, Andersen NA, Nicol SC. Reproductive strategies of the short-beaked echidna—a review with new data from a long-term study on the Tasmanian subspecies (Tachyglossus aculeatus setosus). Aust J Zool. 2009;57(4):275–82.

    Google Scholar 

  27. Morrow GE, Nicol SC. Maternal care in the Tasmanian echidna (Tachyglossus aculeatus setosus). Aust J Zool. 2013;60(5):289–98.

    Google Scholar 

  28. Tyndale-Biscoe CH. Life of Marsupials. CSIRO Publishing; 2005.

  29. Tyndale-Biscoe CCH, Renfree MB, Renfree D. Reproductive Physiology of Marsupials. Cambridge University Press; 1987.

  30. Ward KL, Renfree MB. Effects of progesterone on parturition in the tammar, Macropus eugenii. J Reprod Fertil. 1984;72(1):21–8.

    CAS  PubMed  Google Scholar 

  31. Messer M, Nicholas KR. Biosynthesis of marsupial milk oligosaccharides—characterization and developmental-changes of 2 galactosyltransferases in lactating mammary-glands of the tammar wallaby, macropus-eugenii. Biochim Biophys Acta. 1991;1077(1):79–85.

    CAS  PubMed  Google Scholar 

  32. Sharp JA, Digby M, Lefevre C, Mailer S, Khalil E, Topcic D, et al. The comparative genomics of tammar wallaby and fur seal lactation; models to examine function of milk proteins. In: Thompson A, Boland M, Singh H, editors. Milk proteins: from expression to food. USA: Academic; 2009. p. 55–80.

    Google Scholar 

  33. Brennan AJ, Sharp JA, Digby MR, Nicholas KR. The tammar wallaby: a model to examine endocrine and local control of lactation. IUBMB Life. 2007;59(3):146–50.

    CAS  PubMed  Google Scholar 

  34. Runciman SI, Baudinette RV, Gannon BJ. Postnatal development of the lung parenchyma in a marsupial: the tammar wallaby. Anat Rec. 1996;244(2):193–206.

    CAS  PubMed  Google Scholar 

  35. Basden K, Cooper DW, Deane EM. Development of the lymphoid tissues of the tammar wallaby Macropus eugenii. Reprod Fertil Dev. 1997;9(2):243–54.

    CAS  PubMed  Google Scholar 

  36. Harrison PH, Porter M. Development of the brachial spinal cord in the marsupial Macropus eugenii (tammar wallaby). Dev Brain Res. 1992;70(1):139–44.

    CAS  Google Scholar 

  37. Saunders NR, Adam E, Reader M, Møllgård K. Monodelphis domestica (grey short-tailed opossum): an accessible model for studies of early neocortical development. Anat Embryol. 1989;180(3):227–36.

    CAS  PubMed  Google Scholar 

  38. Nicholas K, Simpson K, Wilson M, Trott J, Shaw D. The tammar wallaby: a model to study putative autocrine-induced changes in milk composition. J Mammary Gland Biol Neoplasia. 1997;2(3):299–310.

    CAS  PubMed  Google Scholar 

  39. Janssens PA, Grigg JA, Dove H, Hulbert AJ. Thyroid hormones during development of a marsupial, the tammar wallaby, Macropus eugenii. J Endocrinol. 1990;127(3):427–36.

    CAS  PubMed  Google Scholar 

  40. Green B, Griffiths M, Leckie RM. Qualitative and quantitative changes in milk fat during lactation in the tammar wallaby (Macropus eugenii). Aust J Biol Sci. 1983;36(5–6):455–61.

    CAS  PubMed  Google Scholar 

  41. Archibald JD. Eutheria (Placental Mammals). eLS. John Wiley & Sons, Ltd; 2001.

  42. Wildman DE, Chen C, Erez O, Grossman LI, Goodman M, Romero R. Evolution of the mammalian placenta revealed by phylogenetic analysis. Proc Natl Acad Sci U S A. 2006;103(9):3203–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Vaughan T, Ryan J, Czaplewski N. Mammalogy. Jones & Bartlett Learning; 2011.

  44. Hamilton M, Davidson A, Sibly R, Brown J. Universal scaling of production rates across mammalian lineages. Proc Biol Sci. 2011;278(1705):560–6.

    PubMed Central  PubMed  Google Scholar 

  45. Blackburn DG, Hayssen V, Murphy CJ. The origins of lactation and the evolution of milk: a review with new hypotheses. Mammal Rev. 1989;19(1):1–26.

    Google Scholar 

  46. McClellan HL, Miller SJ, Hartmann PE. Evolution of lactation: nutrition v. protection with special reference to five mammalian species. Nutr Res Rev. 2008;21(2):97–116.

    CAS  PubMed  Google Scholar 

  47. Wada Y, Lonnerdal B. Bioactive peptides derived from human milk proteins—mechanisms of action. J Nutr Biochem. 2014;25(5):503–14.

    CAS  PubMed  Google Scholar 

  48. Shah NP. Effects of milk-derived bioactives: an overview. Brit J Nutr. 2000;84:S3–10.

    CAS  PubMed  Google Scholar 

  49. Livney YD. Milk proteins as vehicles for bioactives. Curr Opin Colloid Interface Sci. 2010;15(1–2):73–83.

    CAS  Google Scholar 

  50. Nagpal R, Behare P, Rana R, Kumar A, Kumar M, Arora S, et al. Bioactive peptides derived from milk proteins and their health beneficial potentials: an update. Food Funct. 2011;2(1):18–27.

    CAS  PubMed  Google Scholar 

  51. Pihlanto A. Antioxidative peptides derived from milk proteins. Int Dairy J. 2006;16(11):1306–14.

    CAS  Google Scholar 

  52. Murray BA, FitzGerald RJ. Angiotensin converting enzyme inhibitory peptides derived from food proteins: Biochemistry, bioactivity and production. Curr Pharm Design. 2007;13(8):773–91.

    CAS  Google Scholar 

  53. Dallas DC, Guerrero A, Khaldi N, Borghese R, Bhandari A, Underwood MA, et al. A peptidomic analysis of human milk digestion in the infant stomach reveals protein-specific degradation patterns. J Nutr. 2014;144(6):815–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Kwek JH, Iongh RD, Digby MR, Renfree MB, Nicholas KR, Familari M. Cross-fostering of the tammar wallaby (Macropus eugenii) pouch young accelerates fore-stomach maturation. Mech Dev. 2009;126(5–6):449–63.

    CAS  PubMed  Google Scholar 

  55. Fox PF, McSweeney PLH. Advanced dairy chemistry. Volume 1A, Proteins basic aspects. 4th ed. New York: Springer; 2013.

    Google Scholar 

  56. Guerrero A, Dallas DC, Contreras S, Chee S, Parker EA, Sun X, et al. Mechanistic peptidomics: factors that dictate specificity in the formation of endogenous peptides in human milk. Mol Cell Proteomics MCP. 2014;13(12):3343–51.

    CAS  PubMed  Google Scholar 

  57. Dallas DC, Smink CJ, Robinson RC, Tian T, Guerrero A, Parker EA, et al. Endogenous human milk Peptide release is greater after preterm birth than term birth. J Nutr. 2015;145(3):425–33.

    CAS  PubMed  Google Scholar 

  58. Ambros V. microRNAs: tiny regulators with great potential. Cell. 2001;107(7):823–6.

    CAS  PubMed  Google Scholar 

  59. Zhou Q, Li MZ, Wang XY, Li QZ, Wang T, Zhu Q, et al. Immune-related MicroRNAs are abundant in breast milk exosomes. Int J Biol Sci. 2012;8(1):118–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Zhu M, Yi M, Kim CH, Deng C, Li Y, Medina D, et al. Integrated miRNA and mRNA expression profiling of mouse mammary tumor models identifies miRNA signatures associated with mammary tumor lineage. Genome Biol. 2011;12(8):R77.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Brit J Cancer. 2006;94(6):776–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Song L, Tuan RS. MicroRNAs and cell differentiation in mammalian development. Birth Defects Res C Embryo Today Rev. 2006;78(2):140–9.

    CAS  Google Scholar 

  63. Michael A, Bajracharya SD, Yuen PST, Zhou H, Star RA, Illei GG, et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010;16(1):34–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005;17(7):879–87.

    CAS  PubMed  Google Scholar 

  65. Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004;101(36):13368–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105(30):10513–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.

    CAS  PubMed  Google Scholar 

  68. Gu Y, Li M, Wang T, Liang Y, Zhong Z, Wang X, et al. Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS One. 2012;7(8):e43691.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Ji ZB, Wang GZ, Xie ZJ, Zhang CL, Wang JM. Identification and characterization of microRNA in the dairy goat (Capra hircus) mammary gland by Solexa deep-sequencing technology. Mol Biol Rep. 2012;39(10):9361–71.

    CAS  PubMed  Google Scholar 

  70. Filipowicz W, Großhans H. The Liver-Specific MicroRNA miR-122: Biology and Therapeutic Potential. In: Gasser SM, Li E, editors. Epigenetics and Disease. Progress in Drug Research: Springer Basel; 2011. p. 221–38.

  71. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, et al. MicroRNA expression in zebrafish embryonic development. Science. 2005;309(5732):310–1.

    CAS  PubMed  Google Scholar 

  72. Wu X, Wu SQ, Tong L, Luan TA, Lin LX, Lu SL, et al. miR-122 affects the viability and apoptosis of hepatocellular carcinoma cells. Scand J Gastroenterol. 2009;44(11):1332–9.

    CAS  PubMed  Google Scholar 

  73. Liu C, Teng ZQ, Santistevan NJ, Szulwach KE, Guo W, Jin P, et al. Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell. 2010;6(5):433–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. McKiernan RC, Jimenez-Mateos EM, Sano T, Bray I, Stallings RL, Simon RP, et al. Expression profiling the microRNA response to epileptic preconditioning identifies miR-184 as a modulator of seizure-induced neuronal death. Exp Neurol. 2012;237(2):346–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Agrawal R, Tran U, Wessely O. The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1. Development. 2009;136(23):3927–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Conte I, Carrella S, Avellino R, Karali M, Marco-Ferreres R, Bovolenta P, et al. miR-204 is required for lens and retinal development via Meis2 targeting. Proc Natl Acad Sci. 2010.

  77. Avellino R, Carrella S, Pirozzi M, Risolino M, Salierno FG, Franco P, et al. miR-204 targeting of <italic>Ankrd13A</italic> controls both mesenchymal neural crest and lens cell migration. PLoS ONE. 2013;8(4):e61099.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Khoshgoo N, Kholdebarin R, Iwasiow BM, Keijzer R. MicroRNAs and lung development. Pediatr Pulmonol. 2013;48(4):317–23.

    PubMed  Google Scholar 

  79. Bhaskaran M, Wang Y, Zhang H, Weng T, Baviskar P, Guo Y, et al. MicroRNA-127 modulates fetal lung development. Physiol Genomics. 2009;37(3):268–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Chen Y, Song YX, Wang ZN. The microRNA-148/152 family: multi-faceted players. Mol Cancer. 2013;12:43.

    PubMed Central  PubMed  Google Scholar 

  81. Zhao C, Sun G, Li S, Lang MF, Yang S, Li W, et al. MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci U S A. 2010;107(5):1876–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Grosshans H, Johnson T, Reinert KL, Gerstein M, Slack FJ. The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev Cell. 2005;8(3):321–30.

    CAS  PubMed  Google Scholar 

  83. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.

    CAS  PubMed  Google Scholar 

  84. Filipowicz W, Grosshans H. The liver-specific microRNA miR-122: biology and therapeutic potential. Prog Drug Res Fortschritte der Arzneimittelforschung Progres des recherches pharmaceutiques. 2011;67:221–38.

    CAS  PubMed  Google Scholar 

  85. Choong ML, Yang HH, McNiece I. MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp Hematol. 2007;35(4):551–64.

    CAS  PubMed  Google Scholar 

  86. Jovicic A, Zaldivar Jolissaint JF, Moser R, Silva Santos Mde F, Luthi-Carter R. MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington’s disease-related mechanisms. PLoS One. 2013;8(1):e54222.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Avnit-Sagi T, Kantorovich L, Kredo-Russo S, Hornstein E, Walker MD. The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One. 2009;4(4):e5033.

    PubMed Central  PubMed  Google Scholar 

  88. Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol. 2007;5(8):e203.

    PubMed Central  PubMed  Google Scholar 

  89. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A. 2009;106(14):5813–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Conte I, Carrella S, Avellino R, Karali M, Marco-Ferreres R, Bovolenta P, et al. miR-204 is required for lens and retinal development via Meis2 targeting. Proc Natl Acad Sci U S A. 2010;107(35):15491–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Hata T, Murakami K, Nakatani H, Yamamoto Y, Matsuda T, Aoki N. Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem Bioph Res Co. 2010;396(2):528–33.

    CAS  Google Scholar 

  92. Old JM, Deane EM. The lymphoid and immunohaematopoietic tissues of the embryonic brushtail possum (Trichosurus vulpecula). Anat Embryol. 2003;206(3):193–7.

    CAS  PubMed  Google Scholar 

  93. Yadav M. Characteristics of blood in the pouch young of a marsupial, Setonix brachyurus. Aust J Zool. 1972;20(3):249–63.

    Google Scholar 

  94. Daly KA, Digby M, Lefevre C, Mailer S, Thomson P, Nicholas K, et al. Analysis of the expression of immunoglobulins throughout lactation suggests two periods of immune transfer in the tammar wallaby (Macropus eugenii). Vet Immunol Immunopathol. 2007;120(3–4):187–200.

    CAS  PubMed  Google Scholar 

  95. Bals R, Wilson JM. Cathelicidins-a family of multifunctional antimicrobial peptides. Cell Mol Life Sci CMLS. 2003;60(4):711–20.

    CAS  PubMed  Google Scholar 

  96. Wanyonyi SS, Sharp JA, Khalil E, Lefevre C, Nicholas KR. Tammar wallaby mammary cathelicidins are differentially expressed during lactation and exhibit antimicrobial and cell proliferative activity. Comp Biochem Physiol A Mol Integr Physiol. 2011;160(3):431–9.

    CAS  PubMed  Google Scholar 

  97. Sharp JA, Lefèvre C, Nicholas KR. Molecular evolution of monotreme and marsupial whey acidic protein genes. Evol Dev. 2007;9(4):378–92.

    CAS  PubMed  Google Scholar 

  98. Watt AP, Sharp JA, Lefevre C, Nicholas KR. WFDC2 is differentially expressed in the mammary gland of the tammar wallaby and provides immune protection to the mammary gland and the developing pouch young. Dev Comp Immunol. 2012;36(3):584–90.

    CAS  PubMed  Google Scholar 

  99. Batish VK, Chander H, Zumdegeni KC, Bhatta KL, Singh RS. Antibacterial activity of lactoferrin against some common food-borne pathogenic organisms. Aust J Dairy Technol. 1988;5:16–8.

    Google Scholar 

  100. Lönnerdal B. Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr. 2003;77(6):1537S–43.

    PubMed  Google Scholar 

  101. Saito H, Miyakawa H, Tamura Y, Shimamura S, Tomita M. Potent bactericidal activity of bovine lactoferrin hydrolysate produced by heat treatment at acidic pH. J Dairy Sci. 1991;74(11):3724–30.

    CAS  PubMed  Google Scholar 

  102. Lefevre CMSJ, Nicholas KR. Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals. Reprod Fertil Dev. 2009;21(8):1015–27.

    CAS  PubMed  Google Scholar 

  103. Bisana S, Kumar S, Rismiller P, Nicol SC, Lefèvre C, Nicholas KR, et al. Identification and functional characterization of a novel monotreme- specific antibacterial protein expressed during lactation. PLoS ONE. 2013;8(1):e53686.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Enjapoori AK, Grant TR, Nicol SC, Lefevre CM, Nicholas KR, Sharp JA. Monotreme lactation protein is highly expressed in monotreme milk and provides antimicrobial protection. Genome Biol Evol. 2014;6(10):2754–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Griffiths M, Elliott M, Leckie RMC, Schoefl G. Observations of the comparative anatomy and ultrastructure of mammary glands and on the fatty acids of the triglycerides in platypus and echidna milk fats. J Zool. 1973;169(2):255–79.

    CAS  Google Scholar 

  106. Griffiths M, McIntosh D, Coles REA. The mammary gland of the echidna, Tachyglossus aculeatus’ with observations on the incubation of the egg and on the newly-hatched young. J Zool. 1969;158(3):371–86.

    CAS  Google Scholar 

  107. Connolly JH, Canfield PJ, McClure SJ, Whittington RJ. Histological and immunohistological investigation of lymphoid tissue in the platypus (Ornithorhynchus anatinus). J Anat. 1999;195(2):161–71.

    PubMed Central  PubMed  Google Scholar 

  108. Withers DR, Gaspal FM, Mackley EC, Marriott CL, Ross EA, Desanti GE, et al. Cutting edge: lymphoid tissue inducer cells maintain memory CD4 T cells within secondary lymphoid tissue. J Immunol. 2012;189(5):2094–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Nicholas KR. Control of milk protein synthesis in the marsupial Macropus eugenii: a model system to study prolactin-dependent development. In: Tyndale-Biscoe CHJ, P.A., editor. The developing marsupial. Models for biomedical research; 1988. p. 68–85.

  110. Trott JF, Simpson KJ, Moyle RL, Hearn CM, Shaw G, Nicholas KR, et al. Maternal regulation of milk composition, milk production, and pouch young development during lactation in the tammar wallaby (Macropus eugenii). Biol Reprod. 2003;68(3):929–36.

    CAS  PubMed  Google Scholar 

  111. Edwards M, Deakin J. The marsupial pouch: implications for reproductive success and mammalian evolution. Aust J Zool. 2012.

  112. Edwards M, Hinds L, Deane E, Deakin J. A review of complementary mechanisms which protect the developing marsupial pouch young. Dev Comp Immunol. 2012;37(2):213–20.

    CAS  PubMed  Google Scholar 

  113. Power ML, Schulkin J. Maternal regulation of offspring development in mammals is an ancient adaptation tied to lactation. Appl Translat Genomics. 2013;2(1):55–63.

    CAS  Google Scholar 

  114. Garnica AD, Chan WY. The role of the placenta in fetal nutrition and growth. J Am Coll Nutr. 1996;15(3):206–22.

    CAS  PubMed  Google Scholar 

  115. Bell AW, Hay WW, Ehrhardt RA. Placental transport of nutrients and its implications for fetal growth. J Reprod Fertil. 1999;54:401–10.

    CAS  Google Scholar 

  116. Jansson T, Powell TL. Human placental transport in altered fetal growth: does the placenta function as a nutrient sensor?—a review. Placenta. 2006;27(Supplement(0)):91–7.

    Google Scholar 

  117. Jansson T, Powell TL. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci. 2007;113(1):1–13.

    CAS  PubMed  Google Scholar 

  118. Burton GJ, Barker DJP, Moffett A, Thornburg K. The placenta and human developmental programming. Cambridge: Cambridge University Press; 2010.

    Google Scholar 

  119. Zeltser LM, Leibel RL. Roles of the placenta in fetal brain development. Proc Natl Acad Sci. 2011;108(38):15667–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Bonnin A, Goeden N, Chen K, Wilson ML, King J, Shih JC, et al. A transient placental source of serotonin for the fetal forebrain. Nature. 2011;472(7343):347–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Bonnin A, Levitt P. Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience. 2011;197:1–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Myatt L. Placental adaptive responses and fetal programming. J Physiol. 2006;572(1):25–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Tyndale-Biscoe C, Renfree M. Reproductive physiology of Marsupials. Cambridge: Cambridge University Press; 1987.

    Google Scholar 

  124. Joss JL, Molloy MP, Hinds L, Deane E. A longitudinal study of the protein components of marsupial milk from birth to weaning in the tammar wallaby (Macropus eugenii). Dev Comp Immunol. 2009;33(2):152–61.

    CAS  PubMed  Google Scholar 

  125. Xu R-J. Bioactive Peptides in Milk and their Biological and Health Implications. Food for Health in the Pacific Rim. Food & Nutrition Press, Inc.; 2008. p. 291–301.

  126. Grosvenor CE, Picciano MF, Baumrucker CR. Hormones and growth-factors in milk. Endocr Rev. 1993;14(6):710–28.

    CAS  PubMed  Google Scholar 

  127. Pearlman WH. Hormones and tissue-growth factors in milk—evolutionary implications. Endocr Regul. 1991;25(1–2):4–9.

    CAS  PubMed  Google Scholar 

  128. Waite R, Giraud A, Old J, Howlett M, Shaw G, Nicholas K, et al. Cross-fostering in Macropus eugenii leads to increased weight but not accelerated gastrointestinal maturation. J Exp Zool A Comp Exp Biol. 2005;303(5):331–44.

    PubMed  Google Scholar 

  129. Schanbacher FL, Talhouk RS, Murray FA, Gherman LI, Willett LB. Milk-borne bioactive peptides. Int Dairy J. 1998;8(5–6):393–403.

    CAS  Google Scholar 

  130. Daly KA, Digby MR, Lefévre C, Nicholas KR, Deane EM, Williamson P. Identification, characterization and expression of cathelicidin in the pouch young of tammar wallaby (Macropus eugenii). Comp Biochem Physiol B Biochem Mol Biol. 2008;149(3):524–33.

    PubMed  Google Scholar 

  131. Rodriguez NA, Caplan MS. Oropharyngeal administration of Mother’s milk to prevent necrotizing enterocolitis in extremely low-birth-weight infants: theoretical perspectives. J Perinat Neonatal Nurs. 2015;29(1):81–90.

    PubMed  Google Scholar 

  132. Sullivan S, Schanler R, Kim J, Patel A, Trawöger R, Kiechl-Kohlendorfer U, et al. An Exclusively Human Milk-Based Diet Is Associated with a Lower Rate of Necrotizing Enterocolitis than a Diet of Human Milk and Bovine Milk-Based Products. J Pediatr. 2009;In Press.

  133. Yadav M. The transmissions of antibodies across the gut of pouch-young marsupials. 1971;21(5).

  134. Tschanz SA. Strukturelle Aspekte der prä- und postnatalen Lungenentwicklung. Pneumologie. 2007;61(7):478–89.

    Google Scholar 

  135. Mess AM, Ferner KJ. Evolution and development of gas exchange structures in Mammalia: the placenta and the lung. Respir Physiol Neurobiol. 2010;173(Suppl):S74–82.

    PubMed  Google Scholar 

  136. Gemmell RT, Little GJ. The structure of the lung of the newborn marsupial bandicoot, Isoodon macrounus. Cell Tissue Res. 1982;223(2):445–53.

    Google Scholar 

  137. Frappell PB, Mortola JP. Respiratory function in a newborn marsupial with skin gas exchange. Respir Physiol. 2000;120(1):35–45.

    CAS  PubMed  Google Scholar 

  138. Szdzuy K, Zeller U, Renfree M, Tzschentke B, Janke O. Postnatal lung and metabolic development in two marsupial and four eutherian species. J Anat. 2008;212(2):164–79.

    PubMed Central  PubMed  Google Scholar 

  139. Setchell PJ. The development of thermoregulation and thyroid function in the marsupial Macropus eugenii (Desmarest). Comp Biochem Physiol A Physiol. 1974;47(3):1115–21.

    CAS  Google Scholar 

  140. Buaboocha W, Gemmell RT. Thyroid-gland development in the brushtail possum, trichosurus-vulpecula. Anatomical Record. 1995;243(2):254–60.

    CAS  PubMed  Google Scholar 

  141. Gemmell RT, Sernia C. The transfer of thyroxine from the mother to the young of the marsupials, the bandicoot (Isoodon macrourus) and the possum (Trichosurus vulpecula). Comp Biochem Physiol A Physiol. 1992;103(3):541–3.

    CAS  Google Scholar 

  142. Modepalli V, Hinds L, Sharp J, Lefevre C, Nicholas K. Role of marsupial tammar wallaby milk in lung maturation of pouch young. BMC Dev Biol. 2015;15(1):16.

    PubMed Central  PubMed  Google Scholar 

  143. Weibel ER. What makes a good lung? The morphometric basis of lung function. Swiss Med Wkly. 2009;139(27–28):375–86.

    PubMed  Google Scholar 

  144. Weibel ER. Gas exchange: large surface and thin barrier determine pulmonary diffusing capacity. Minerva Anestesiol. 1999;65(6):377–82.

    CAS  PubMed  Google Scholar 

  145. Fraser J, Walls M, McGuire W. Respiratory complications of preterm birth. BMJ. 2004;329(7472):962–5.

    PubMed Central  PubMed  Google Scholar 

  146. Simpson SJ, Flecknoe SJ, Clugston RD, Greer JJ, Hooper SB, Frappell PB. Structural and functional development of the respiratory system in a newborn marsupial with cutaneous gas exchange. Physiol Biochem Zool PBZ. 2011;84(6):634–49.

    CAS  PubMed  Google Scholar 

  147. Mortola JP, Frappell PB, Woolley PA. Breathing through skin in a newborn mammal. Nature. 1999;397(6721):660.

    CAS  PubMed  Google Scholar 

  148. Cloudsley-Thompson JL. The significance of cutaneous respiration in Bufo regularis Reuss. Int J Biometeorol. 1970;14(4):361–4.

    CAS  PubMed  Google Scholar 

  149. Ucar A, Vafaizadeh V, Jarry H, Fiedler J, Klemmt PAB, Thum T, et al. miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development. Nat Genet. 2010;42(12):1101–U100.

    CAS  PubMed  Google Scholar 

  150. Goldenberg RL, Rouse DJ. Medical progress—Prevention of premature birth. New Engl J Med. 1998;339(5):313–20.

    CAS  PubMed  Google Scholar 

  151. Wang ML, Dorer DJ, Fleming MP, Catlin EA. Clinical outcomes of near-term infants. Pediatrics. 2004;114(2):372–6.

    PubMed  Google Scholar 

  152. Petrou S. The economic consequences of preterm birth during the first 10 years of life. Bjog-Int J Obstet Gy. 2005;112:10–5.

    Google Scholar 

  153. Beck S, Wojdyla D, Say L, Betran AP, Merialdi M, Requejo JH, et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. B World Health Organ. 2010;88(1):31–8.

    Google Scholar 

  154. Escobar GJ, Clark RH, Greene JD. Short-term outcomes of infants born at 35 and 36 weeks gestation: We need to ask more questions. Semin Perinatol. 2006;30(1):28–33.

    PubMed  Google Scholar 

  155. Svedenkrans J, Henckel E, Kowalski J, Norman M, Bohlin K. Long-term impact of preterm birth on exercise capacity in healthy young Men: a national population-based cohort study. PLoS ONE. 2013;8(12):e80869.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A. Sharp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharp, J.A., Modepalli, V., Enjapoori, A.K. et al. Bioactive Functions of Milk Proteins: a Comparative Genomics Approach. J Mammary Gland Biol Neoplasia 19, 289–302 (2014). https://doi.org/10.1007/s10911-015-9331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-015-9331-6

Keywords

Navigation