Skip to main content
Log in

Influence of the Lanthanide Ion and Solution Conditions on Formation of Lanthanide Wells–Dawson Polyoxotungstates

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Lanthanide complexes of polyoxometalates, including the α2-P2W17O61 10− ligand, have been pioneered by Michael T. Pope, to whom this paper is dedicated. Examination of the solid-state and solution behavior of lanthanide complexes of the α2-P2W17O61 10− ligand are reported here to identify trends that will facilitate rational synthesis of hybrid organic lanthanide polyoxometalate complexes. Therefore, combining our data with that obtained by Pope and others a number of trends come into view. It is clear that there are two structural types for the 1:1 or 2:2 [Ln(H2O)X2-P2W17O61)]2 14− species. The early lanthanides show a “cap to cap” structure that allows the Ln ion to be 9 coordinate and accommodates the longer bond lengths. The mid-late lanthanides show a “cap to belt” structure that allows the lanthanides to be 8 coordinate; this structural type is appropriate for the shorter bond lengths of the later lanthanides. The 1:1⇌1:2 equilibrium, that was observed by Pope for the Ce(III) analog is prevalent for the early- mid lanthanides. This equilibrium is slightly dependent on pH; however, cations have a major influence on this equilibrium. Larger, poorly hydrated cations appear to favor the 1:2 species for the early to mid lanthanides. Cations do not appear to influence the equilibrium for the later lanthanides; for all counterions, the 1:1 species was stable with no trace of the 1:2 species. Stability constants, K1 and K2, for the early to mid lanthanides were measured in this study by a competitive method and compared well with other published stability constant determinations. We suggest that the stability constants are not only dependent on the strength of interaction of the Ln with the α2-P2W17O61 10− ligand, but are also significantly influenced by the medium. The medium may bias the equilibria of the early-mid lanthanides and later lanthanides. The log K1/log K2 ratios are very close, suggesting that it is difficult to separate the 1:1 and 1:2 Ln: α2-P2W17O61 10− species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. Hill C. (1998) Chem. Rev. 98: 1

    Article  PubMed  CAS  Google Scholar 

  2. Mizuno N., Misono M. (1998) Chem. Rev. 98: 199

    Article  PubMed  CAS  Google Scholar 

  3. Belai N., Sadakane M., Pope M. T. (2001) J. Am. Chem. Soc. 123: 2087

    Article  PubMed  CAS  Google Scholar 

  4. A. V. Besserguenev, M. H. Dickman, and M. T. Pope (2001). Inorg. Chem. 40, 2582.

  5. Creaser I., Heckel M. C., Neitz R. J., Pope M. T. (1993) Inorg. Chem. 32: 1573

    Article  CAS  Google Scholar 

  6. Dickman M. H., Gama G. J., Kim K.-C., Pope M. T. (1996) J. Cluster Sci. 7: 567

    Article  CAS  Google Scholar 

  7. Gaunt A. J., May I., Collision K., Holman K. T., Pope M. T. (2003) J. Mol. Struct. 656: 101

    Article  CAS  Google Scholar 

  8. Kim K.-C., Pope M. T. (1999) J. Amer. Chem. Soc. 121:8512

    Article  CAS  Google Scholar 

  9. K.-C. Kim and M. T. Pope (2001). J. Chem. Soc. Dalton Trans. 986

  10. Pope M. T., Wei X., Wassermann K., Dickman M. H. (1998) C.R. Acad. Sci. Paris 1:297

    CAS  Google Scholar 

  11. M. Sadakane, A. Ostuni, and M. T. Pope (2002). J. Chem. Soc. Dalton Trans. 63.

  12. Termes S. C., Pope M. T. (1978) Transition Met. Chem. 3: 103

    Article  CAS  Google Scholar 

  13. Wassermann K., Pope M. T. (2001) Inorg. Chem. 40: 2763

    Article  PubMed  CAS  Google Scholar 

  14. Wassermann K., Dickman M. H., Pope M. T. (1997) Angew. Chem. Int. Ed. Engl. 36: 1445

    Article  CAS  Google Scholar 

  15. Saito A., Choppin G. R. (1991) Inorg. Chem. 30: 4563

    Article  CAS  Google Scholar 

  16. Saito A., Choppin G. R. (1995) Radiochimica Acta 68: 221

    CAS  Google Scholar 

  17. Saito A., Tomari H., Choppin G. R. (1997) Inorganica Chimica Acta 258: 145

    Article  CAS  Google Scholar 

  18. Milyukova M. S., Varezhkina N. S., Myasoedov B. F. (1990) Soviet Radiochem., Engl. Trans 32:361

    Google Scholar 

  19. Chartier D., Donnet L., Adnet J. M. (1998) Radiochim. Acta 83:129

    CAS  Google Scholar 

  20. Milyukova M. S., Litvina M. N., Myasoedov B. P. (1983) Radiokhimiya 25: 706

    CAS  Google Scholar 

  21. Bion L., Moisy P., Madic C. (1995) Radiochimica Acta 69: 251

    CAS  Google Scholar 

  22. L. Bion, P. Moisy, F. Vaufrey, S. Meot-Reymond, and E. Simoni, et al. (1997). Radiochim. Acta 78.

  23. Shilov V. P. (1980) Radiokhimiya 22: 727

    Google Scholar 

  24. Yusov A. B., Shilov V. P. (1999) Radiochemistry 41: 1

    CAS  Google Scholar 

  25. Gaunt A. J., May I., Helliwell M., Richardson S. (2002) J. Amer. Chem. Soc. 124: 13350

    Article  CAS  Google Scholar 

  26. Williams C. W., Blaudeau J.-P., Sullivan J. C., Antonio M. R., and Bursten B. et al. (2001) J. Am. Chem. Soc.; (Communication) 123: 4346

    Article  CAS  Google Scholar 

  27. Chiang M.-H., Williams C. W., Soderholm L., Antonio M. R. (2003) Eur. J. Inorg. Chem. 2003: 2663

    Article  CAS  Google Scholar 

  28. Duval P. B., Burns C. J., Clark D. L., Morris D. E., and Scott B. L. et al. (2001) Angew. Chem. Int. Ed. 40: 3357

    Article  CAS  Google Scholar 

  29. Okun N. M., Ritorto M. D., Anderson T. M., Apkarian R. P., Hill C. L. (2004) Chem. Mater. 16: 2551

    Article  CAS  Google Scholar 

  30. Liu S., Kurth D. G., Bredenkotter B., Volkmer D. (2002) J. Am. Chem. Soc. 124: 12279

    Article  PubMed  CAS  Google Scholar 

  31. Liu S., Kurth D. G., Mohwald H., Volkmer D. (2002) Adv. Mater. 14: 225

    Article  Google Scholar 

  32. Sadakane M., Dickman M. H., Pope M. T. (2000) Angew. Chem. Int. Ed. 39: 2914

    Article  CAS  Google Scholar 

  33. P. Mialane, L. Lisnard, A. Mallard, J. Marrot, and E. Antic-Fidancev, et al. (2003) Inorg. Chem. 42, 2102

  34. Muller A., Krickemeyer E., Bogge H., Schmidtmann M., Peters F. (1998) Chem. Int. Ed. 37: 3360

    CAS  Google Scholar 

  35. Muller A., Sarkar S., Shah S. Q. N., Bogge H., Schmidtmann M. et al. (1999) Angew. Chem. Int. Ed. 38: 3238

    Article  CAS  Google Scholar 

  36. Sadakane M., Dickman M. H., Pope M. T. (2001) Inorg. Chem. 40: 2715

    Article  PubMed  CAS  Google Scholar 

  37. Zhang C., Howell R. C., Scotland K. B., Perez F. G., Todaro L. et al. (2004) Inorg. Chem. 43:7691

    Article  PubMed  CAS  Google Scholar 

  38. Bartis J., Dankova M., Blumenstein M., Francesconi L. C. (1997) J. Alloys Compunds 249: 56

    Article  CAS  Google Scholar 

  39. J. Bartis, S. Sukal, M. Dankova, E. Kraft, and R. Kronzon, et al. (1997). J. Chem. Soc., Dalton Trans 1937

  40. Bartis J., Dankova M., Lessmann J. J., Luo Q.-H., Horrocks W. D. Jr. et al. (1999) Inorg. Chem. 38:1042

    Article  PubMed  CAS  Google Scholar 

  41. Luo Q., Howell R. C., Dankova M., Bartis J., Williams C. W. et al. (2001) Inorg. Chem. 40:1894

    Article  PubMed  CAS  Google Scholar 

  42. Luo Q., Howell R. C., Bartis J., Dankova M., Horrocks W. D. Jr. et al. (2002) Inorg. Chem. 41:6112

    Article  PubMed  CAS  Google Scholar 

  43. Kortz U. (2003) J. Cluster Sci. 14: 205

    Article  CAS  Google Scholar 

  44. Peacock R. D., Weakley T. J. R. (1971) J. Chem. Soc. A: 1836

    Google Scholar 

  45. Molchanov V. P., Kazanskii L. P., Torchenkova E. A., Simonov V. I. (1979) Crystallogr. 24: 96

    Google Scholar 

  46. D. Drewes, B. Krebs (2006). Z. Naturforsch., in press

  47. L. Bion, F. Mercier, P. Decambox, P. Moisy (1999). Radiochim. Acta 161

  48. Lu Y.-W., Keita B., Nadjo L. (2004) Polyhedron 23: 1579

    Article  CAS  Google Scholar 

  49. Van Pelt C. E., Crooks W. J. III, Choppin G. R. (2003) Inorg. Chim. Acta. 346:215

    Article  CAS  Google Scholar 

  50. R. Contant, (1990) Inorg. Synth. 27, 71

  51. A. I. Vogel (1961) A Text-Book of Quantitative Inorganic Analysis including Elementary Instrumental Analysis. 3rd edn. (Longmans), 43 pp.

  52. Martell A. E., Motekaitis R. J. (1992) Determination and Use of Stability Constants 2 edn.; Wiley VCH, New York, 200 pp

    Google Scholar 

  53. J.-P. Ciabrini, R. Contant (1993) J. Chem. Research (M). 2720

  54. Contant R., Ciabrini J.-P. (1982) J. Chem. Res (M) 1982: 641

    Google Scholar 

  55. V. P. Yusov (1980). Radiokhimiya 22, 727

    Google Scholar 

  56. S. L. Wu and Jr. W. D. Horrocks (1997). J.C.S. Dalton 1497

  57. Wu S. L., Horrocks W. D. Jr. (1996) Anal. Chem. 68:394

    Article  CAS  Google Scholar 

  58. J. F. Kirby and L. C. W. Baker (1998). Inorg. Chem. 37, 5537

  59. N. Laronze, J. Marrot and G. Herve (2003), Inorg. Chem. 42, 5857

  60. V. A. Grigoriev, C. L. Hill and I. A. Weinstock, (2000). J. Am. Chem. Soc. 122, 3544

    Google Scholar 

  61. V. A. Grigoriev, D. Cheng, C. L. Hill, and I. A. Weinstock (2001). J. Am. Chem. Soc. 123, 5292

    Google Scholar 

  62. Zhang C., Howell R. C., Luo Q., Fieselmann H. L., Todaro L. et al. (2005). Inorg. Chem. 44:3569

    Article  PubMed  CAS  Google Scholar 

  63. D. M. Y. Barrett, I. A. Kawha, J. T. Mague, and G. L. McPherson (1995). J. Org. Chem. 60, 5946

    Google Scholar 

  64. R. D. Peacock and T. J. R. Weakley (1971). J. Chem. Soc. A.

  65. B. Burton-Pye, R. C. Howell, Q. Luo and L. C. Francesconi (2006). work in progress

  66. Boglio C., Lenoble G., Duhayon C., Hasenknopf B., Thouvenot R. et al. (2006) Inorg. Chem. 45:1389

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the following sources of support for this research: NSF Grant No. CHE 0414218, NIH-S06 GM60654 (SCORE), the Faculty Research Award Program of the City University of New York, Eugene Lang Faculty Development Award, (LCF), the Gertrude Elion Fellowship and Rose Kefar Rose Dissertation Award (CZ); and NSF Grant MRI0116244 for the purchase of an X-ray Diffractometer (LCF). Research Infrastructure at Hunter College is partially supported by NIH-Research Centers in Minority Institutions Grant RR03037–08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn C. Francesconi.

Additional information

This paper is dedicated to Professor Michael T. Pope in honor of his substantial and sustained contributions to polyoxometalate chemistry and his inspiration to scientists working in the field.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Bensaid, L., McGregor, D. et al. Influence of the Lanthanide Ion and Solution Conditions on Formation of Lanthanide Wells–Dawson Polyoxotungstates. J Clust Sci 17, 389–425 (2006). https://doi.org/10.1007/s10876-006-0066-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-006-0066-9

Keywords

Navigation