Skip to main content

Advertisement

Log in

Chemical characterization of sub-micrometer aerosol particles in the tropical Atlantic Ocean: marine and biomass burning influences

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Sub-micron marine aerosol particles (PM1) were collected over the period 22 June–21 July 2011 during the RV MARIA S. MERIAN cruise MSM 18/3, which travelled from the Cape Verdean island of São Vicente to Gabon, in the process crossing the tropical Atlantic Ocean with its equatorial upwelling regime. According to air mass origin and the chemical composition of the sampled aerosol particles, three main regimes could be established. Aerosol particles in the first part of the cruise were mainly of marine origin (Region I). In the second part of the cruise, marine influences mixed with increasing influence from biomass burning (Region II). In the final part of the cruise, which approached the African mainland, the biomass burning influence became dominant (Region III). Generally, aerosol particles were dominated by sulfate (caverage = 2.0 μg m−3) and ammonium ions (caverage = 0.7 μg m−3), which were well-correlated and increased slightly over the duration of the cruise. High concentrations of water-insoluble organic carbon (WISOC; caverage = 0.4 μg m−3) were found, most likely as a result of the high oceanic productivity in this region. Water-soluble organic carbon (WSOC) concentrations increased from 0.26 μg m−3 in Region I to 2.3 μg m−3 in Region III, most likely as a result of biomass burning influences. The major organic aerosol constituents were oxalic acid, methanesulfonic acid (MSA), and aliphatic amines. MSA concentrations were quite constant during the cruise (caverage = 42 ng m−3). Aliphatic amines were most abundant in Region I, with concentrations of ~ 20 ng m−3. Oxalic acid showed the opposite trend, with average concentrations of 12 ng m−3 in Region I and 158 ng m−3 in Region III. The α-dicarbonyl compounds glyoxal and methylglyoxal were detected in the aerosol particles in the low ng m−3 range and were closely correlated with oxalic acid. MSA and aliphatic amines arise from biogenic marine sources, whereas oxalic acid and the α-dicarbonyl compounds were attributed to biomass burning. Concentrations of n-alkanes increased from 0.8 to 4.7 ng m−3 over the duration of the cruise. PAHs and hopanes were abundant only in Region III (caverage of PAHs = 0.13 ng m−3; caverage of hopanes = 0.19 ng m−3). Levoglucosan was identified in several samples obtained in Region III, with caverage = 1.9 ng m−3, which points to (aged) biomass burning influences. The organic compounds quantified in this study could explain 8.3 % of WSOC in Regions I, where aliphatic amines and MSA dominated, 3.7 % of WSOC in Region II and 2.5 % of WSOC in Region III, where oxalic acid dominated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bikkina, S., Kawamura, K., Miyazaki, Y., Fu, P.: High abundances of oxalic, azelaic, and glyoxylic acids and methylglyoxal in the open ocean with high biological activity: implication for secondary OA formation from isoprene. Geophys. Res. Lett. 41(10), 3649–3657 (2014). doi:10.1002/2014gl059913

    Article  Google Scholar 

  • Cavalli, F., Facchini, M.C., Decesari, S., Mircea, M., Emblico, L., Fuzzi, S., Ceburnis, D., Yoon, Y.J., O’Dowd, C.D., Putaud, J.P., Dell’Acqua, A.: Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic. J. Geophys. Res. - Atmos. 109(D24), − (2004). doi:10.1029/2004jd005137

  • Cavalli, F., Viana, M., Yttri, K.E., Genberg, J., Putaud, J.P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmos. Meas. Tech. 3(1), 79–89 (2010)

    Article  Google Scholar 

  • Chen, J., Kawamura, K., Liu, C.Q., Fu, P.Q.: Long-term observations of saccharides in remote marine aerosols from the western North Pacific: a comparison between 1990–1993 and 2006–2009 periods. Atmos. Environ. 67, 448–458 (2013). doi:10.1016/j.atmosenv.2012.11.014

    Article  Google Scholar 

  • Claeys, M., Wang, W., Vermeylen, R., Kourtchev, I., Chi, X.G., Farhat, Y., Surratt, J.D., Gomez-Gonzalez, Y., Sciare, J., Maenhaut, W.: Chemical characterisation of marine aerosol at Amsterdam Island during the austral summer of 2006–2007. J. Aerosol Sci. 41(1), 13–22 (2010). doi:10.1016/j.jaerosci.2009.08.003

    Article  Google Scholar 

  • Cunliffe, M., Engel, A., Frka, S., Gasparovic, B., Guitart, C., Murrell, J.C., Salter, M., Stolle, C., Upstill-Goddard, R., Wurl, O.: Sea surface microlayers: a unified physicochemical and biological perspective of the air-ocean interface. Prog. Oceanogr. 109, 104–116 (2013). doi:10.1016/j.pocean.2012.08.004

    Article  Google Scholar 

  • Decesari, S., Finessi, E., Rinaldi, M., Paglione, M., Fuzzi, S., Stephanou, E.G., Tziaras, T., Spyros, A., Ceburnis, D., O’Dowd, C., Dall’Osto, M., Harrison, R.M., Allan, J., Coe, H., Facchini, M.C.: Primary and secondary marine organic aerosols over the North Atlantic Ocean during the MAP experiment. J. Geophys. Res. - Atmos. 116 (2011). doi:10.1029/2011jd016204

  • Ervens, B., Turpin, B.J., Weber, R.J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos. Chem. Phys. 11(21), 11069–11102 (2011). doi:10.5194/acp-11-11069-2011

    Article  Google Scholar 

  • Facchini, M.C., Decesari, S., Rinaldi, M., Carbone, C., Finessi, E., Mircea, M., Fuzzi, S., Moretti, F., Tagliavini, E., Ceburnis, D., O’Dowd, C.D.: Important source of marine secondary organic aerosol from biogenic amines. Environ. Sci. Technol. 42(24), 9116–9121 (2008). doi:10.1021/es8018385

    Article  Google Scholar 

  • Fietzek, P., Fiedler, B., Steinhoff, T., Kortzinger, A.: In situ quality assessment of a novel underwater pCO(2) sensor based on membrane equilibration and NDIR spectrometry. J. Atmos. Ocean. Technol. 31(1), 181–196 (2014). doi:10.1175/jtech-d-13-00083.1

    Article  Google Scholar 

  • Fomba, K.W., Mueller, K., van Pinxteren, D., Poulain, L., van Pinxteren, M., Herrmann, H.: Long-term chemical characterization of tropical and marine aerosols at the CVAO: field studies (2007 to 2011). Atmos. Chem. Phys. 14(3), 3917–3971 (2014)

    Article  Google Scholar 

  • Fu, T.M., Jacob, D.J., Wittrock, F., Burrows, J.P., Vrekoussis, M., Henze, D.K.: Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res.-Atmos. 113(D15) (2008). doi:10.1029/2007jd009505 D15303

  • Fu, P.Q., Kawamura, K., Miura, K.: Molecular characterization of marine organic aerosols collected during a round-the-world cruise. J. Geophys. Res.-Atmos. 116 (2011). doi:10.1029/2011jd015604 D13302

  • Fu, P., Kawamura, K., Usukura, K., Miura, K.: Dicarboxylic acids, ketocarboxylic acids and glyoxal in the marine aerosols collected during a round-the-world cruise. Mar. Chem. 148, 22–32 (2013). doi:10.1016/j.marchem.2012.11.002

    Article  Google Scholar 

  • Fuentes, E., Coe, H., Green, D., de Leeuw, G., McFiggans, G.: On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol -part 1: source fluxes. Atmos. Chem. Phys. 10(19), 9295–9317 (2010). doi:10.5194/acp-10-9295-2010

    Article  Google Scholar 

  • Gantt, B., Meskhidze, N.: The physical and chemical characteristics of marine primary organic aerosol: a review. Atmos. Chem. Phys. 13(8), 3979–3996 (2013). doi:10.5194/acp-13-3979-2013

    Article  Google Scholar 

  • Gibb, S.W., Mantoura, R.F.C., Liss, P.S.: Ocean–atmosphere exchange and atmospheric speciation of ammonia and methylamines in the region of the NW Arabian Sea. Glob. Biogeochem. Cycles 13(1), 161–177 (1999). doi:10.1029/98gb00743

    Article  Google Scholar 

  • Harrison, R.M., Jones, A.M., Lawrence, R.G.: A pragmatic mass closure model for airborne particulate matter at urban background and roadside sites. Atmos. Environ. 37(35), 4927–4933 (2003). doi:10.1016/j.atmosenv.2003.08.025

    Article  Google Scholar 

  • Hawkins, L.N., Russell, L.M., Covert, D.S., Quinn, P.K., Bates, T.S.: Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALS-REx 2008. J. Geophys. Res.-Atmos. 115, 16 (2010). doi:D1320110.1029/2009jd013276

  • He, J., Zielinska, B., Balasubramanian, R.: Composition of semi-volatile organic compounds in the urban atmosphere of Singapore: influence of biomass burning. Atmos. Chem. Phys. 10(23), 11401–11413 (2010). doi:10.5194/acp-10-11401-2010

    Article  Google Scholar 

  • Hoffmann, D., Tilgner, A., Iinuma, Y., Herrmann, H.: Atmospheric stability of levoglucosan: a detailed laboratory and modeling study. Environ. Sci. Technol. 44(2), 694–699 (2010). doi:10.1021/Es902476f

    Article  Google Scholar 

  • Iinuma, Y., Brueggemann, E., Gnauk, T., Mueller, K., Andreae, M.O., Helas, G., Parmar, R., Herrmann, H.: Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J. Geophys. Res.-Atmos. 112(D8) (2007). doi:10.1029/2006jd007120 D08209

  • Iinuma, Y., Engling, G., Puxbaum, H., Herrmann, H.: A highly resolved anion-exchange chromatographic method for determination of saccharidic tracers for biomass combustion and primary bio-particles in atmospheric aerosol. Atmos. Environ. 43(6), 1367–1371 (2009). doi:10.1016/j.atmosenv.2008.11.020

    Article  Google Scholar 

  • Körtzinger, A.: Short cruise report RV MARIA S. MERIAN Cruise MSM18-3 Mindelo – Libreville 22 June – 21 July 2011. IFM-GEOMAR, Kiel, Germany, 9 pp (2011). doi:10.3289/SCR_MSM_18_3

  • Kurten, T., Loukonen, V., Vehkamaki, H., Kulmala, M.: Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia. Atmos. Chem. Phys. 8(14), 4095–4103 (2008)

    Article  Google Scholar 

  • Marzi, R., Torkelson, B.E., Olson, R.K.: A revised carbon preference index. Org. Geochem. 20(8), 1303–1306 (1993). doi:10.1016/0146-6380(93)90016-5

    Article  Google Scholar 

  • Miyazaki, Y., Kawamura, K., Jung, J., Furutani, H., Uematsu, M.: Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific. Atmos. Chem. Phys. 11(7), 3037–3049 (2011). doi:10.5194/acp-11-3037-2011

    Article  Google Scholar 

  • Müller, C., Iinuma, Y., Karstensen, J., van Pinxteren, D., Lehmann, S., Gnauk, T., Herrmann, H.: Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands. Atmos. Chem. Phys. 9(24), 9587–9597 (2009)

    Article  Google Scholar 

  • Müller, K., Lehmann, S., van Pinxteren, D., Gnauk, T., Niedermeier, N., Wiedensohler, A., Herrmann, H.: Particle characterization at the Cape Verde atmospheric observatory during the 2007 RHaMBLe intensive. Atmos. Chem. Phys. 10(6), 2709–2721 (2010)

    Article  Google Scholar 

  • Neusuess, C., Pelzing, M., Plewka, A., Herrmann, H.: A new analytical approach for size-resolved speciation of organic compounds in atmospheric aerosol particles: methods and first results. J. Geophys. Res.-Atmos. 105(D4), 4513–4527 (2000). doi:10.1029/1999jd901038

    Article  Google Scholar 

  • Nie, W., Wang, T., Xue, L.K., Ding, A.J., Wang, X.F., Gao, X.M., Xu, Z., Yu, Y.C., Yuan, C., Zhou, Z.S., Gao, R., Liu, X.H., Wang, Y., Fan, S.J., Poon, S., Zhang, Q.Z., Wang, W.X.: Asian dust storm observed at a rural mountain site in southern China: chemical evolution and heterogeneous photochemistry. Atmos. Chem. Phys. 12(24), 11985–11995 (2012). doi:10.5194/acp-12-11985-2012

    Article  Google Scholar 

  • O’Dowd, C.D., Facchini, M.C., Cavalli, F., Ceburnis, D., Mircea, M., Decesari, S., Fuzzi, S., Yoon, Y.J., Putaud, J.P.: Biogenically driven organic contribution to marine aerosol. Nature 431(7009), 676–680 (2004)

    Article  Google Scholar 

  • Ovadnevaite, J., O’Dowd, C., Dall’Osto, M., Ceburnis, D., Worsnop, D.R., Berresheim, H.: Detecting high contributions of primary organic matter to marine aerosol: a case study. Geophys. Res. Lett. 38 (2011). doi:10.1029/2010gl046083 Artn L02807

  • Patwardhan, P.R., Satrio, J.A., Brown, R.C., Shanks, B.H.: Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour. Technol. 101, 4646–4655 (2010)

    Article  Google Scholar 

  • Quinn, P.K., Coffman, D.J.: Local closure during the first aerosol characterization experiment (ACE 1): aerosol mass concentration and scattering and backscattering coefficients. J. Geophys. Res.-Atmos. 103(D13), 16575–16596 (1998). doi:10.1029/97jd03757

    Article  Google Scholar 

  • Rinaldi, M., Decesari, S., Finessi, E., Giulianelli, L., Carbone, C., Fuzzi, S., O’Dowd, C.D., Ceburnis, D., Facchini, M.C.: Primary and Secondary Organic Marine Aerosol and Oceanic Biological Activity: Recent Results and New Perspectives for Future Studies. Adv. Meteorol., 10 (2010). doi:10.1155/2010/310682 310682

  • Rinaldi, M., Decesari, S., Carbone, C., Finessi, E., Fuzzi, S., Ceburnis, D., O’Dowd, C.D., Sciare, J., Burrows, J.P., Vrekoussis, M., Ervens, B., Tsigaridis, K., Facchini, M.C.: Evidence of a natural marine source of oxalic acid and a possible link to glyoxal. J. Geophys. Res.-Atmos. 116 (2011). doi:10.1029/2011jd015659 D16204

  • Rinaldi, M., Fuzzi, S., Decesari, S., Marullo, S., Santoleri, R., Provenzale, A., von Hardenberg, J., Ceburnis, D., Vaishya, A., O’Dowd, C.D., Facchini, M.C.: Is chlorophyll-a the best surrogate for organic matter enrichment in submicron primary marine aerosol? J. Geophys. Res.-Atmos. 118(10), 4964–4973 (2013). doi:10.1002/jgrd.50417

    Article  Google Scholar 

  • Sander, R., Keene, W.C., Pszenny, A.A.P., Arimoto, R., Ayers, G.P., Baboukas, E., Cainey, J.M., Crutzen, P.J., Duce, R.A., Honninger, G., Huebert, B.J., Maenhaut, W., Mihalopoulos, N., Turekian, V.C., Van Dingenen, R.: Inorganic bromine in the marine boundary layer: a critical review. Atmos. Chem. Phys. 3, 1301–1336 (2003)

    Article  Google Scholar 

  • Savoie, D.L., Arimoto, R., Keene, W.C., Prospero, J.M., Duce, R.A., Galloway, J.N.: Marine biogenic and anthropogenic contributions to non-sea-salt sulfate in the marine boundary layer over the North Atlantic Ocean. J. Geophys. Res.-Atmos. 107(D18) (2002). doi:10.1029/2001jd000970

  • Sciare, J., Oikonomou, K., Cachier, H., Mihalopoulos, N., Andreae, M.O., Maenhaut, W., Sarda-Esteve, R.: Aerosol mass closure and reconstruction of the light scattering coefficient over the eastern Mediterranean sea during the MINOS campaign. Atmos. Chem. Phys. 5, 2253–2265 (2005)

    Article  Google Scholar 

  • Sinreich, R., Coburn, S., Dix, B., Volkamer, R.: Ship-based detection of glyoxal over the remote tropical pacific ocean. Atmos. Chem. Phys. 10(23), 11359–11371 (2010). doi:10.5194/acp-10-11359-2010

    Article  Google Scholar 

  • Speer, R.E., Edney, E.O., Kleindienst, T.E.: Impact of organic compounds on the concentrations of liquid water in ambient PM2.5. J. Aerosol Sci. 34(1), 63–77 (2003)

    Article  Google Scholar 

  • Turpin, B.J., Lim, H.J.: Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol. 35(1), 602–610 (2001)

    Article  Google Scholar 

  • van Pinxteren, M., Herrmann, H.: Glyoxal and methylglyoxal in Atlantic seawater and marine aerosol particles: method development and first application during the polarstern cruise ANT XXVII/4. Atmos. Chem. Phys. 13, 11791–11802 (2013). doi:10.5194/acp-13-11791-2013

    Article  Google Scholar 

  • van Pinxteren, D., Brueggemann, E., Gnauk, T., Iinuma, Y., Mueller, K., Nowak, A., Achtert, P., Wiedensohler, A., Herrmann, H.: Size- and time-resolved chemical particle characterization during CAREBeijing-2006: Different pollution regimes and diurnal profiles. J. Geophys. Res.-Atmos. 114 (2009). doi:10.1029/2008jd010890

  • van Pinxteren, D., Brueggemann, E., Gnauk, T., Mueller, K., Thiel, C., Herrmann, H.: A GIS based approach to back trajectory analysis for the source apportionment of aerosol constituents and its first application. J. Atmos. Chem. 67(1), 1–28 (2010). doi:10.1007/s10874-011-9199-9

    Article  Google Scholar 

  • van Pinxteren, D., Neusuess, C., Herrmann, H.: On the abundance and source contributions of dicarboxylic acids in size-resolved aerosol particles at continental sites in central Europe. Atmos. Chem. Phys. 14(8), 3913–3928 (2014). doi:10.5194/acp-14-3913-2014

    Article  Google Scholar 

  • Wang, G., Kawamura, K., Xie, M., Hu, S., Gao, S., Cao, J., An, Z., Wang, Z.: Size-distributions of n-alkanes, PAHs and hopanes and their sources in the urban, mountain and marine atmospheres over East Asia. Atmos. Chem. Phys. 9(22), 8869–8882 (2009)

    Article  Google Scholar 

  • Warneck, P.: In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere. Atmos. Environ. 37(17), 2423–2427 (2003). doi:10.1016/s1352-2310(03)00136-5

    Article  Google Scholar 

  • Yoon, Y.J., Ceburnis, D., Cavalli, F., Jourdan, O., Putaud, J.P., Facchini, M.C., Decesari, S., Fuzzi, S., Sellegri, K., Jennings, S.G., O’Dowd, C.D.: Seasonal characteristics of the physicochemical properties of North Atlantic marine atmospheric aerosols. J. Geophys. Res.-Atmos. 112(D4) (2007). doi:10.1029/2005jd007044

  • Zhang, M., Chen, J.M., Wang, T., Cheng, T.T., Lin, L., Bhatia, R.S., Hanvey, M.: Chemical characterization of aerosols over the Atlantic Ocean and the Pacific Ocean during two cruises in 2007 and 2008. J. Geophys. Res.-Atmos. 115. (2010) doi:10.1029/2010jd014246

Download references

Acknowledgments

The authors acknowledge the captain and crew of the RV MARIA S. MERIAN MSM 18/3 cruise; René Rabe for aerosol particle sampling; Tobias Steinhoff for support with biogeochemical measurements performed during the cruise; Maryna Voyevoda, Susanne Fuchs, Anett Dietze, Sylvia Haferkorn and Anke Roedger for technical assistance; and Stefano Decesari for support regarding the IC method. Furthermore, the authors thank the Deutsche Forschungsgemeinschaft (DFG) for funding within the ALAMARE project (HE 3086/16-1) and the Bundesministerium fuer Bildung und Forschung (BMBF) for funding within the SOPRAN project (FKZ03F0662-J & FKZ03F0611A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Herrmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 7239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Pinxteren, M., Fiedler, B., van Pinxteren, D. et al. Chemical characterization of sub-micrometer aerosol particles in the tropical Atlantic Ocean: marine and biomass burning influences. J Atmos Chem 72, 105–125 (2015). https://doi.org/10.1007/s10874-015-9307-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-015-9307-3

Keywords

Navigation