Skip to main content
Log in

Modelling multiphase chemistry in deliquescent aerosols and clouds using CAPRAM3.0i

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Modelling studies were performed with the multiphase mechanism RACM-MIM2ext/CAPRAM 3.0i to investigate the tropospheric multiphase chemistry in deliquesced particles and non-precipitating clouds using the SPACCIM model framework. Simulations using a non-permanent cloud scenario were carried out for two different environmental conditions focusing on the multiphase chemistry of oxidants and other linked chemical subsystems. Model results were analysed by time-resolved reaction flux analyses allowing advanced interpretations. The model shows significant effects of multiphase chemical interactions on the tropospheric budget of gas-phase oxidants and organic compounds. In-cloud gas-phase OH radical concentration reductions of about 90 % and 75 % were modelled for urban and remote conditions, respectively. The reduced in-cloud gas-phase oxidation budget increases the tropospheric residence time of organic trace gases by up to about 30 %. Aqueous-phase oxidations of methylglyoxal and 1,4-butenedial were identified as important OH radical sinks under polluted conditions. The model revealed that the organic C3 and C4 chemistry contributes with about 38 %/48 % and 8 %/9 % considerably to the urban and remote cloud / aqueous particle OH sinks. Furthermore, the simulations clearly implicate the potential role of deliquescent particles to operate as a reactive chemical medium due to an efficient TMI/HOx,y chemical processing including e.g. an effective in-situ formation of OH radicals. Considerable chemical differences between deliquescent particles and cloud droplets, e.g. a circa 2 times more efficient daytime iron processing in the urban deliquescent particles, were identified. The in-cloud oxidation of methylglyoxal and its oxidation products is identified as efficient sink for NO3 radicals in the aqueous phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acker, K., Wieprecht, W., Moller, D., Mauersberger, G., Naumann, S., Oestreich, A.: Evidence of ozone destruction in clouds. Naturwissenschaften 82(2), 86–89 (1995)

    Article  Google Scholar 

  • Adriano, D.C., Johnson, A.H.: Acidic Precipitation. Biological and ecological effects, vol. 2. Springer, New York (1989)

    Google Scholar 

  • Alexander, B., Park, R.J., Jacob, D.J., Gong, S.L.: Transition metal-catalyzed oxidation of atmospheric sulfur: global implications for the sulfur budget. J Geophys Res-Atmos. 114 (2009)

  • Anastasio, C., Faust, B.C., Allen, J.M.: Aqueous phase photochemical formation of hydrogen peroxide in authentic cloud waters. J Geophys Res 99(D4), 8231–8248 (1994)

    Article  Google Scholar 

  • Arakaki, T., Kuroki, Y., Okada, K., Nakama, Y., Ikota, H., Kinjo, M., Higuchi, T., Uehara, M., Tanahara, A.: Chemical composition and photochemical formation of hydroxyl radicals in aqueous extracts of aerosol particles collected in Okinawa. Japan. Atmos Environ 40(25), 4764–4774 (2006)

    Article  Google Scholar 

  • Arellanes, C., Paulson, S.E., Fine, P.M., Sioutas, C.: Exceeding of Henry’s Law by hydrogen peroxide associated with urban aerosols. Environ Sci Technol 40(16), 4859–4866 (2006)

    Article  Google Scholar 

  • Barth, M.C.: The importance of cloud drop representation on cloud photochemistry. Atmos Res 82(1–2), 294–309 (2006)

    Article  Google Scholar 

  • Behra, P., Sigg, L.: Evidence for redox cycling of iron in atmospheric water droplets. Nature 344(6265), 419–421 (1990)

    Article  Google Scholar 

  • Bräuer, P., Tilgner, A., Wolke, R., Herrmann, H.: Mechanism development and modelling of tropospheric multiphase halogen chemistry: the CAPRAM Halogen Module 2.0 (HM2). J Atmos Chem 70(1), 19–52 (2013)

    Article  Google Scholar 

  • Brunekreef, B., Holgate, S.T.: Air pollution and health. Lancet 360(9341), 1233–1242 (2002)

    Article  Google Scholar 

  • Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley, J.A., Hansen, J.E., Hofmann, D.J.: Climate forcing by anthropogenic aerosols. Science 255(5043), 423–430 (1992)

    Article  Google Scholar 

  • Clegg, S.L., Seinfeld, J.H.: Thermodynamic models of aqueous solutions containing inorganic electrolytes and dicarboxylic acids at 298.15 K. I. The acids as non-dissociating components. J Phys Chem A 110, 5692–5717 (2006)

    Article  Google Scholar 

  • Collett, J.L., Bator, A., Rao, X., Demoz, B.B.: Acidity variations across the cloud drop size spectrum and their influence on rates of atmospheric sulfate production. Geophys Res Lett 21, 2393–2396 (1994)

    Article  Google Scholar 

  • Commane, R., Floquet, C.F.A., Ingham, T., Stone, D., Evans, M.J., Heard, D.E.: Observations of OH and HO2 radicals over West Africa. Atmos Chem Phys 10(18), 8783–8801 (2010)

    Article  Google Scholar 

  • Cox, R.A., Penkett, S.A.: Formation of atmospheric acidity. In: Beilke, S., Elshout, A.J. (eds.) Acid Deposition, pp. 56–81. Springer, Netherlands (1983)

    Chapter  Google Scholar 

  • Deguillaume, L., Tilgner, A., Schrödner, R., Wolke, R., Chaumerliac, N., Herrmann, H.: Towards an operational aqueous phase chemistry mechanism for regional chemistry-transport models: CAPRAM-RED and its application to the COSMO-MUSCAT model. J Atmos Chem 64(1), 1–35 (2009)

    Article  Google Scholar 

  • Deguillaume, L., Leriche, M., Desboeufs, K., Mailhot, G., George, C., Chaumerliac, N.: Transition metals in atmospheric liquid phases: sources, reactivity, and sensitive parameters. Chem Rev 105(9), 3388–3431 (2005)

    Article  Google Scholar 

  • Deguillaume, L., Leriche, M., Monod, A., Chaumerliac, N.: The role of transition metal ions on HOx radicals in clouds: a numerical evaluation of its impact on multiphase chemistry. Atmos Chem Phys 4, 95–110 (2004)

    Article  Google Scholar 

  • Deutsch, F., Hoffmann, P., Ortner, H.M.: Field experimental investigations on the Fe(II)- and Fe(III)-content in cloudwater samples. J Atmos Chem 40(1), 87–105 (2001)

    Article  Google Scholar 

  • Erel, Y., Pehkonen, S.O., Hoffmann, M.R.: Redox chemistry of iron in Fog and stratus clouds. J Geophys Res-Atmos 98(D10), 18423–18434 (1993)

    Article  Google Scholar 

  • Ervens, B., Carlton, A.G., Turpin, B.J., Altieri, K.E., Kreidenweis, S.M., Feingold, G.: Secondary organic aerosol yields from cloud-processing of isoprene oxidation products. Geophys Res Lett. 35(2), (2008)

  • Ervens, B., George, C., Williams, J.E., Buxton, G.V., Salmon, G.A., Bydder, M., Wilkinson, F., Dentener, F., Mirabel, P., Wolke, R., Herrmann, H.: CAPRAM 2.4 (MODAC mechanism): an extended and condensed tropospheric aqueous phase mechanism and its application. J Geophys Res Atmos. 108(D14), (2003)

  • Finlayson-Pitts, B.J., Pitts, J.N.: Chemistry of the upper and lower atmosphere. (2000)

  • Frost, G.J., Trainer, M., Mauldin, R.L., Eisele, F.L., Prevot, A.S.H., Flocke, S.J., Madronich, S., Kok, G., Schillawski, R.D., Baumgardner, D., Bradshaw, J.: Photochemical modeling of OH levels during the first aerosol characterization experiment (ACE 1). J Geophys Res-Atmos 104(D13), 16041–16052 (1999)

    Article  Google Scholar 

  • Geyer, A., Ackermann, R., Dubois, R., Lohrmann, B., Müller, T., Platt, U.: Long-term observation of nitrate radicals in the continental boundary layer near Berlin. Atmos Environ 35(21), 3619–3631 (2001). doi:10.1016/S1352-2310(00)00549-5

    Article  Google Scholar 

  • Gong, W.M., Dastoor, A.P., Bouchet, V.S., Gong, S.L., Makar, P.A., Moran, M.D., Pabla, B., Menard, S., Crevier, L.P., Cousineau, S., Venkatesh, S.: Cloud processing of gases and aerosols in a regional air quality model (AURAMS). Atmos Res 82(1–2), 248–275 (2006)

    Article  Google Scholar 

  • Grègoire, P.J., Chaumerliac, N.: Impact of cloud dynamics on tropospheric chemistry: advances in modeling the interactions between microphysical and chemical processes. J Atmos Chem 18, 247–266 (1994)

    Article  Google Scholar 

  • Hallquist, M., Wenger, J.C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N.M., George, C., Goldstein, A.H., Hamilton, J.F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M.E., Jimenez, J.L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T.F., Monod, A., Prevot, A.S.H., Seinfeld, J.H., Surratt, J.D., Szmigielski, R., Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9(14), 5155–5236 (2009)

    Article  Google Scholar 

  • Healy, R.M., Wenger, J.C., Metzger, A., Duplissy, J., Kalberer, M., Dommen, J.: Gas/particle partitioning of carbonyls in the photooxidation of isoprene and 1,3,5-trimethylbenzene. Atmos Chem Phys 8, 3215–3230 (2008). doi:10.5194/acp-8-3215-2008

    Article  Google Scholar 

  • Herrmann, H., Hoffmann, D., Schaefer, T., Bräuer, P., Tilgner, A.: Tropospheric aqueous-phase free-radical chemistry: radical sources, spectra, reaction kinetics and prediction tools. Chem Phys Chem 11, 3796–3822 (2010). doi:10.1002/cphc.201000533

    Article  Google Scholar 

  • Herrmann, H.: Kinetics of aqueous phase reactions relevant for atmospheric chemistry. Chem Rev 103(12), 4691–4716 (2003)

    Article  Google Scholar 

  • Herrmann, H., Ervens, B., Jacobi, H.W., Wolke, R., Nowacki, P., Zellner, R.: CAPRAM2.3: a chemical aqueous phase radical mechanism for tropospheric chemistry. J Atmos Chem 36(3), 231–284 (2000)

    Article  Google Scholar 

  • Herrmann, H., Tilgner, A., Barzaghi, P., Majdik, Z., Gligorovski, S., Poulain, L., Monod, A.: Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0. Atmos Environ 39(23–24), 4351–4363 (2005)

    Article  Google Scholar 

  • Holgate, S.T.: The epidemic of allergy and asthma. Nature 402(6760), B2–B4 (1999)

    Article  Google Scholar 

  • Jacob, D.J.: Chemistry of Oh in remote clouds and its role in the production of formic-acid and peroxymonosulfate. J Geophys Res-Atmos 91(D9), 9807–9826 (1986)

    Article  Google Scholar 

  • Jacob, D.J.: Heterogeneous chemistry and tropospheric ozone. Atmos Environ 34(12–14), 2131–2159 (2000)

    Article  Google Scholar 

  • Keene, W.C., Pszenny, A.A.P.: Comment on “Reactions at interfaces as a source of sulfate formation in sea-salt particles” (I). Science. 303(5658), (2004)

  • Kieber, R.J., Hardison, D.R., Whitehead, R.F., Willey, J.D.: Photochemical production of Fe(II) in rainwater. Environ Sci Technol 37(20), 4610–4616 (2003)

    Article  Google Scholar 

  • Kieber, R.J., Williams, K., Willey, J.D., Skrabal, S., Avery, G.B.: Iron speciation in coastal rainwater: concentration and deposition to seawater. Mar Chem 73(2), 83–95 (2001)

    Article  Google Scholar 

  • Koren, I., Remer, L.A., Kaufman, Y.J., Rudich, Y., Martins, J.V.: On the twilight zone between clouds and aerosols. Geophys Res Lett. 34(8), (2007)

  • Kreidenweis, S.M., Walcek, C.J., Feingold, G., Gong, W.M., Jacobson, M.Z., Kim, C.H., Liu, X.H., Penner, J.E., Nenes, A., Seinfeld, J.H.: Modification of aerosol mass and size distribution due to aqueous-phase SO2 oxidation in clouds: Comparisons of several models. J Geophys Res-Atmos. 108(D7), (2003)

  • Kroll, J.H., Seinfeld, J.H.: Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmos Environ 42(16), 3593–3624 (2008)

    Article  Google Scholar 

  • Lelieveld, J., Crutzen, P.J.: Influences of cloud photochemical processes on tropospheric ozone. Nature 343(6255), 227–233 (1990)

    Article  Google Scholar 

  • Lelieveld, J., Crutzen, P.J.: The role of clouds in tropospheric photochemistry. J Atmos Chem 12(3), 229–267 (1991)

    Article  Google Scholar 

  • Leriche, M., Curier, R.L., Deguillaume, L., Caro, D., Sellegri, K., Chaumerliac, N.: Numerical quantification of sources and phase partitioning of chemical species in cloud: application to wintertime anthropogenic air masses at the Puy de Dome station. J Atmos Chem 57(3), 281–297 (2007). doi:10.1007/s10874-007-9073-y

    Article  Google Scholar 

  • Leriche, M., Deguillaume, L., Chaumerliac, N.: Modeling study of strong acids formation and partitioning in a polluted cloud during wintertime. J Geophys Res-Atmos. 108(D19), (2003).

  • Leriche, M., Voisin, D., Chaumerliac, N., Monod, A., Aumont, B.: A model for tropospheric multiphase chemistry: application to one cloudy event during the CIME experiment. Atmos Environ 34(29–30), 5015–5036 (2000)

    Article  Google Scholar 

  • Li, S.M., Macdonald, A.M., Strapp, J.W., Lee, Y.N., Zhou, X.L.: Chemical and physical characterizations of atmospheric aerosols over southern California. J Geophys Res-Atmos 102(D17), 21341–21353 (1997)

    Article  Google Scholar 

  • Liang, J.Y., Jacob, D.J.: Effect of aqueous phase cloud chemistry on tropospheric ozone. J Geophys Res-Atmos 102(D5), 5993–6001 (1997)

    Article  Google Scholar 

  • Liu, X.H., Mauersberger, G., Moller, D.: The effects of cloud processes on the tropospheric photochemistry: an improvement of the EURAD model with a coupled gaseous and aqueous chemical mechanism. Atmos Environ 31(19), 3119–3135 (1997)

    Article  Google Scholar 

  • Lohmann, U., Feichter, J.: Global indirect aerosol effects: a review. Atmos Chem Phys 5, 715–737 (2005)

    Article  Google Scholar 

  • Madronich, S., Calvert, J.G.: Permutation reactions of organic peroxy-radicals in the troposphere. J Geophys Res-Atmos 95(D5), 5697–5715 (1990)

    Article  Google Scholar 

  • Madronich, S., Flocke, S.: The role of solar radiation in atmospheric chemistry. In: Boule, P. (ed.) Handbook of Environmental Chemistry, pp. 1–26. Springer, New York (1999)

    Google Scholar 

  • Mao, J., Fan, S., Jacob, D.J., Travis, K.R.: Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols. Atmos Chem Phys 13, 509–519 (2013)

    Article  Google Scholar 

  • Marinoni, A., Parazols, M., Brigante, M., Deguillaume, L., Amato, P., Delort, A.-M., Laj, P., Mailhot, G.: Hydrogen peroxide in natural cloud water: Sources and photoreactivity. Atmos Res 101, 256–263 (2011)

    Google Scholar 

  • Mauldin, R.L., Madronich, S., Flocke, S.J., Eisele, F.L., Frost, G.J., Prevot, A.S.H.: New insights on OH: measurements around and in clouds. Geophys Res Lett 24(23), 3033–3036 (1997)

    Article  Google Scholar 

  • Monod, A., Carlier, P.: Impact of clouds on the tropospheric ozone budget: direct effect of multiphase photochemistry of soluble organic compounds. Atmos Environ 33(27), 4431–4446 (1999)

    Article  Google Scholar 

  • Moore, K.F., Sherman, D.E., Reilly, J.E., Collett, J.L.: Drop size-dependent chemical composition in clouds and fogs. Part I. Observations. Atmos Environ 38, 1389–1402 (2004)

    Article  Google Scholar 

  • Morita, A., Kanaya, Y., Francisco, J.S.: Uptake of the HO2 radical by water: molecular dynamics calculations and their implications for atmospheric modeling. J Geophys Res-Atmos. 109(D9), (2004)

  • Myriokefalitakis, S., Tsigaridis, K., Mihalopoulos, N., Sciare, J., Nenes, A., Kawamura, K., Segers, A., Kanakidou, M.: In-cloud oxalate formation in the global troposphere: a 3-D modeling study. Atmos Chem Phys 11, 5761–5782 (2011)

    Article  Google Scholar 

  • Parazols, M., Marinoni, A., Amato, P., Abida, O., Laj, P., Mailhot, G.: Speciation and role of iron in cloud droplets at the puy de Dome station. J Atmos Chem 54(3), 267–281 (2006)

    Article  Google Scholar 

  • Pruppacher, H.R., Jaenicke, R.: The processing of water-vapor and aerosols by atmospheric clouds, a global estimate. Atmos Res 38(1–4), 283–295 (1995)

    Article  Google Scholar 

  • Pszenny, A.A.P., Moldanov, J., Keene, W.C., Sander, R., Maben, J.R., Martinez, M., Crutzen, P.J., Perner, D., Prinn, R.G.: Halogen cycling and aerosol pH in the Hawaiian marine boundary layer. Atmos Chem Phys 4, 147–168 (2004)

    Article  Google Scholar 

  • Ravishankara, A.R.: Heterogeneous and multiphase chemistry in the troposphere. Science 276(5315), 1058–1065 (1997)

    Article  Google Scholar 

  • Roberts, J.M., Williams, J., Baumann, K., Buhr, M.P., Goldan, P.D., Holloway, J., Hubler, G., Kuster, W.C., McKeen, S.A., Ryerson, T.B., Trainer, M., Williams, E.J., Fehsenfeld, F.C., Bertman, S.B., Nouaime, G., Seaver, C., Grodzinsky, G., Rodgers, M., Young, V.L.: Measurements of PAN, PPN, and MPAN made during the 1994 and 1995 Nashville Intensives of the Southern Oxidant Study: implications for regional ozone production from biogenic hydrocarbons. J Geophys Res-Atmos 103(D17), 22473–22490 (1998)

    Article  Google Scholar 

  • Rosenfeld, D.: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys Res Lett 26, 3105–3108 (1999)

    Article  Google Scholar 

  • Rosenfeld, D.: Suppression of rain and snow by urban and industrial air pollution. Science 287, 1793–1796 (2000)

    Article  Google Scholar 

  • Sander, R.: Compilation of Henry’s Law constants for inorganic and organic species of potential importance in environmental chemistry (Version 3). http://www.henrys-law.org (1999).

  • Saxena, P., Hildemann, L.M.: Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. J Atmos Chem 24(1), 57–109 (1996)

    Article  Google Scholar 

  • Schwanz, M., Warneck, P., Preiss, M., Hoffmann, P.: Chemical speciation of Iron in fog water. Contrib Atmos Phys 71(1), 131–143 (1998)

    Google Scholar 

  • Schwartz, S.: Mass transport considerations pertinent to aqueous phase reactions of gases in liquid water clouds. In: Jaeschke, W. (ed.) Chemistry of Multiphase Atmospheric Systems, NATO ASI Series, pp. 415–471. Springer, Berlin (1986)

  • Sehili, A.M., Wolke, R., Knoth, O., Simmel, M., Tilgner, A., Herrmann, H.: Comparison of different model approaches for the simulation of multiphase processes. Atmos Environ 39(23–24), 4403–4417 (2005)

    Article  Google Scholar 

  • Shen, H., Anastasio, C.: Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid. Atmos Chem Phys 11, 9671–9682 (2011). doi:10.5194/acp-11-9671-2011

    Article  Google Scholar 

  • Simmel, M., Wurzler, S.: Condensation and activation in sectional cloud microphysical models. Atmos Res 80(2–3), 218–236 (2006)

    Article  Google Scholar 

  • Simmel, M., Diehl, K., Wurzler, S.: Numerical simulation of the microphysics of an orographic cloud: comparison with measurements and sensitivity studies. Atmos Environ 39, 4365–4373 (2005)

    Article  Google Scholar 

  • Stelson, A.W., Seinfeld, J.H.: Chemical mass accounting of urban aerosol. Environ Sci Technol 15(6), 671–679 (1981)

    Article  Google Scholar 

  • Taketani, F., Kanaya, Y., Akimoto, H.: Kinetics of heterogeneous reactions of HO2 radical at ambient concentration levels with (NH4)(2)SO4 and NaCl aerosol particles. J Phys Chem A 112(11), 2370–2377 (2008)

    Article  Google Scholar 

  • Taketani, F., Kanaya, Y., Pochanart, P., Liu, Y., Li, J., Okuzawa, K., Kawamura, K., Wang, Z., Akimoto, H.: Measurement of overall uptake coefficients for HO2 radicals by aerosol particles sampled from ambient air at Mts. Tai and Mang (China). Atmos Chem Phys 12, 11907–11916 (2012)

    Article  Google Scholar 

  • Thornton, J.A., Jaegle, L., McNeill, V.F.: Assessing known pathways for HO2 loss in aqueous atmospheric aerosols: regional and global impacts on tropospheric oxidants. J Geophys Res. 113(D5), (2008)

  • Tie, X.X., Madronich, S., Walters, S., Zhang, R.Y., Rasch, P., Collins, W.: Effect of clouds on photolysis and oxidants in the troposphere. J Geophys Res. 108(D20), (2003)

  • Tilgner, A., Herrmann, H.: Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM. Atmos Environ 44, 5415–5422 (2010)

    Article  Google Scholar 

  • Tilgner, A., Majdik, Z., Sehili, A.M., Simmel, M., Wolke, R., Herrmann, H.: SPACCIM: simulations of the multiphase chemistry occurring in the FEBUKO hill cap cloud experiments. Atmos Environ 39(23–24), 4389–4401 (2005)

    Article  Google Scholar 

  • Villalta, P.W., Lovejoy, E.R., Hanson, D.R.: Reaction probability of peroxyacetyl radical on aqueous surfaces. Geophys Res Lett 23(14), 1765–1768 (1996)

    Article  Google Scholar 

  • Vrekoussis, M., Mihalopoulos, N., Gerasopoulos, E., Kanakidou, M., Crutzen, P.J., Lelieveld, J.: Two-years of NO3 radical observations in the boundary layer over the Eastern Mediterranean. Atmos Chem Phys 7(2), 315–327 (2007). doi:10.5194/acp-7-315-2007

    Article  Google Scholar 

  • von Glasow, R., Crutzen, P.J.: Tropospheric halogen chemistry. In: Heinrich, D.H., Turekian, K.K. (eds.) Treatise on Geochemistry, pp. 1–67. Pergamon, Oxford (2007)

    Google Scholar 

  • Walcek, C.J., Yuan, H.H., Stockwell, W.R.: The influence of aqueous-phase chemical reactions on ozone formation in polluted and nonpolluted clouds. Atmos Environ 31(8), 1221–1237 (1997)

    Article  Google Scholar 

  • Wang, Y., Arellanes, C., Curtis, D.B., Paulson, S.E.: Probing the source of hydrogen peroxide associated with coarse mode aerosol particles in Southern California. Environ Sci Technol 44(11), 4070–4075 (2010)

    Article  Google Scholar 

  • Warneck, P.: The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds. Phys Chem Chem Phys 1(24), 5471–5483 (1999)

    Article  Google Scholar 

  • Williams, J.E., Dentener, F.J., van den Berg, A.R.: The influence of cloud chemistry on HOx and NOx in the moderately polluted marine boundary layer: a 1-D modelling study. Atmos Chem Phys 2, 39–54 (2002)

    Article  Google Scholar 

  • Willey, J.D., Kieber, R.J., Williams, K.H., Crozier, J.S., Skrabal, S.A., Avery, G.B.: Temporal variability of iron speciation in coastal rainwater. J Atmos Chem 37(2), 185–205 (2000)

    Article  Google Scholar 

  • Wolke, R., Sehili, A.M., Simmel, M., Knoth, O., Tilgner, A., Herrmann, H.: SPACCIM: A parcel model with detailed microphysics and complex multiphase chemistry. Atmos Environ 39(23–24), 4375–4388 (2005)

    Article  Google Scholar 

  • Yao, X., Ling, T.Y., Fang, M., Chan, C.K.: Size dependence of in situ pH in submicron atmospheric particles in Hong Kong. Atmos Environ 41(2), 382–393 (2007)

    Article  Google Scholar 

  • Zaveri, R.A., Easter, R.C., Wexler, A.S.: A new method for multicomponent activity coefficients of electrolytes in aqueous atmospheric aerosols. J Geophys Res 110, D02201 (2005)

    Article  Google Scholar 

  • Zuend, A., Marcolli, C., Luo, B.P., Peter, T.: A thermodynamic model of mixed organic–inorganic aerosols to predict activity coefficients. Atmos Chem Phys 8, 4559–4593 (2008)

    Article  Google Scholar 

  • Zuo, Y.G., Holgne, J.: Formation of hydrogen-peroxide and depletion of oxalic-acid in atmospheric water by photolysis of iron(III) oxalato complexes. Environ Sci Technol 26(5), 1014–1022 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Herrmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 7396 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilgner, A., Bräuer, P., Wolke, R. et al. Modelling multiphase chemistry in deliquescent aerosols and clouds using CAPRAM3.0i. J Atmos Chem 70, 221–256 (2013). https://doi.org/10.1007/s10874-013-9267-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-013-9267-4

Keywords

Navigation