Skip to main content
Log in

A GIS based approach to back trajectory analysis for the source apportionment of aerosol constituents and its first application

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A new method has been developed to combine back trajectory statistics with a detailed land cover analysis. It provides numeric proxies for the residence times of sampled air masses above certain land cover classes (marine, natural vegetation, agricultural lands, urban areas, and bare areas), as well as further meteorological parameters (mean trajectory length, solar radiation along trajectory, and local height of the boundary mixing layer). The method has been implemented into a GIS-enabled database system to allow for an efficient processing of large datasets with low computational demands. A principal component analysis was performed on a dataset including the modelled residence times, the modelled meteorological parameters, some measured meteorological parameters (wind speed and temperature), and the concentrations of 10 particle constituents (inorganic ions and organic and elemental carbon) in 5 particle size ranges for 29 winter- and summertime samples at an urban background site in Leipzig, Germany. Six principal components could be extracted which together explained about 80% of the total variance in the dataset. The factors could be attributed to the influence of meteorology to continental background pollution, secondary formation processes in polluted air masses, wood burning, aged sea-salt, local traffic, and long-range transported crustal material. The modelled residence times and the meteorological parameters were generally consistent with the existing knowledge of specific particle sources and thereby facilitated and strengthened the interpretation of the factors. Moreover, they allowed for a clear distinction between continental background pollution and secondary formation processes, which has not been possible in previous source apportionment studies. The results demonstrate that the combined usage of back trajectory, land cover, and meteorological data by the presented method yields valuable additional information on the history of sampled air masses, which can improve the quality of source apportionment of atmospheric aerosol constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida, S.M., Pio, C.A., Freitas, M.C., Reis, M.A., Trancoso, M.A.: Source apportionment of atmospheric urban aerosol based on weekdays/weekend variability: evaluation of road re-suspended dust contribution. Atmos. Environ. 40(11), 2058–2067 (2006)

    Article  Google Scholar 

  • Ashbaugh, L.L., Malm, W.C., Sadeh, W.Z.: A Residence Time Probability Analysis of Sulfur Concentrations at Grand-Canyon-National-Park. Atmos. Environ. 19(8), 1263–1270 (1985)

    Article  Google Scholar 

  • Brüggemann, E., Rolle, W.: Changes of some components of precipitation in East Germany after the unification. Water Air Soil Pollut. 107(1–4), 1–23 (1998)

    Article  Google Scholar 

  • Brüggemann, E., Gerwig, H., Gnauk, T., Müller, K., Herrmann, H.: Influence of seasons, air mass origin and day of the week on size-segregated chemical composition of aerosol particles at a kerbside. Atmos. Environ. 43(15), 2456–2463 (2009)

    Article  Google Scholar 

  • Chan, T.W., Mozurkewich, M.: Application of absolute principal component analysis to size distribution data: identification of particle origins. Atmos. Chem. Phys. 7, 887–897 (2007)

    Article  Google Scholar 

  • Draxler, R.R., Rolph, G.D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD. (2003)

  • Farnham, I.M., Singh, A.K., Stetzenbach, K.J., Johannesson, K.H.: Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemometrics and Intelligent Laboratory Systems 60(1–2), 265–281 (2002)

    Article  Google Scholar 

  • Gietl, J.K., Klemm, O.: Source Identification of Size-Segregated Aerosol in Munster, Germany, by Factor Analysis. Aerosol Sci. Technol. 43(8), 828–837 (2009)

    Article  Google Scholar 

  • Hartung, J.: Multivariate Statistik: Lehr-und Handbuch der angewandten Statistik, 3, Auflth edn. Oldenbourg, München (1989)

    Google Scholar 

  • Herrmann, H., Brüggemann, E., Franck, U., Gnauk, T., Loschau, G., Muller, K., Plewka, A., Spindler, G.: A source study of PM in saxony by size-segregated characterisation. J. Atmos. Chem. 55(2), 103–130 (2006)

    Article  Google Scholar 

  • Hopke, P.K.: Recent developments in receptor modeling. J. Chemometr. 17(5), 255–265 (2003)

    Article  Google Scholar 

  • Iinuma, Y., Brüggemann, E., Gnauk, T., Muller, K., Andreae, M.O., Helas, G., Parmar, R., Herrmann, H.: Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J. Geophys. Res. [Atmos.] 112(D8), D08209 (2007). doi:10.1029/2006jd007120

  • Isaksen, I.S.A., Granier, C., Myhre, G., Berntsen, T.K., Dalsoren, S.B., Gauss, M., Klimont, Z., Benestad, R., Bousquet, P., Collins, W., Cox, T., Eyring, V., Fowler, D., Fuzzi, S., Jockel, P., Laj, P., Lohmann, U., Maione, M., Monks, P., Prevot, A.S.H., Raes, F., Richter, A., Rognerud, B., Schulz, M., Shindell, D., Stevenson, D.S., Storelvmo, T., Wang, W.C., van Weele, M., Wild, M., Wuebbles, D.: Atmospheric composition change: Climate-Chemistry interactions. Atmos. Environ. 43(33), 5138–5192 (2009)

    Article  Google Scholar 

  • Ito, K., Xue, N., Thurston, G.: Spatial variation of PM2.5 chemical species and source-apportioned mass concentrations in New York City. Atmos. Environ. 38(31), 5269–5282 (2004)

    Article  Google Scholar 

  • Kampa, M., Castanas, E.: Human health effects of air pollution. Environ. Pollut. 151(2), 362–367 (2008)

    Article  Google Scholar 

  • Lammel, G., Brüggemann, E., Gnauk, T., Müller, K., Neusüß, C., Röhrl, A.: A new method to study aerosol source contributions along the tracks of air parcels and its application to the near-ground level aerosol chemical composition in central Europe. J. Aerosol Sci. 34(1), 1–25 (2003)

    Article  Google Scholar 

  • Lee, S., Ashbaugh, L.: Comparison of multi-receptor and single-receptor trajectory source apportionment (TSA) methods using artificial sources. Atmos. Environ. 41(6), 1119–1127 (2007)

    Article  Google Scholar 

  • Lenschow, P., Abraham, H.J., Kutzner, K., Lutz, M., Preuss, J.D., Reichenbacher, W.: Some ideas about the sources of PM10. Atmos. Environ. 35, S23–S33 (2001)

    Article  Google Scholar 

  • Lupu, A., Maenhaut, W.: Application and comparison of two statistical trajectory techniques for identification of source regions of atmospheric aerosol species. Atmos. Environ. 36(36–37), 5607–5618 (2002)

    Article  Google Scholar 

  • Maricq, M.M.: Chemical characterization of particulate emissions from diesel engines: A review. J. Aerosol. Sci. 38(11), 1079–1118 (2007)

    Article  Google Scholar 

  • Matta, E., Facchini, M.C., Decesari, S., Mircea, M., Cavalli, F., Fuzzi, S., Putaud, J.P.: Dell’Acqua, A.: Mass closure on the chemical species in size-segregated atmospheric aerosol collected in an urban area of the Po Valley, Italy. Atmos. Chem. Phys. 3, 623–637 (2003)

    Article  Google Scholar 

  • Neusüß, C., Gnauk, T., Plewka, A., Herrmann, H., Quinn, P.K.: Carbonaceous aerosol over the Indian Ocean: OC/EC fractions and selected specifications from size-segregated onboard samples. J. Geophys. Res. [Atmos.] 107(D19), art. no.-8031 (2002)

  • Nyanganyura, D., Maenhaut, W., Mathuthua, M., Makarau, A., Meixner, F.X.: The chemical composition of tropospheric aerosols and their contributing sources to a continental background site in northern Zimbabwe from 1994 to 2000. Atmos. Environ. 41(12), 2644–2659 (2007)

    Article  Google Scholar 

  • Pateraki, S., Maggos, T., Michopoulos, J., Flocas, H.A., Asimakopoulos, D.N., Vasilakos, C.: Ions species size distribution in particulate matter associated with VOCs and meteorological conditions over an urban region. Chemosphere 72(3), 496–503 (2008)

    Article  Google Scholar 

  • Plessow, K., Spindler, G., Zimmermann, F., Matschullat, K.: Seasonal variations and interactions of N-containing gases and particles over a coniferous forest, Saxony. Germany. Atmos. Environ. 39(37), 6995–7007 (2005)

    Article  Google Scholar 

  • Puxbaum, H., Caseiro, A., Sanchez-Ochoa, A., Kasper-Giebl, A., Claeys, M., Gelencser, A., Legrand, M., Preunkert, S., Pio, C.: Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. J. Geophys. Res.-Atmos. 112(D23), D23s05 (2007) doi:10.1029/2006jd008114

  • Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C.R., Cots, N., Massague, G., Puig, O.: PM 10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmos. Environ. 35(36), 6407–6419 (2001)

    Article  Google Scholar 

  • Rueda, C.A., Greenberg, J.A., Ustin, S.L.: StarSpan: A Tool for Fast Selective Pixel Extraction from Remotely Sensed Data. Center for Spatial Technologies and Remote Sensing (CSTARS), University of California at Davis, Davis, CA, USA, (2005)

  • Scheifinger, H., Kaiser, A.: Validation of trajectory statistical methods. Atmos. Environ. 41(39), 8846–8856 (2007)

    Article  Google Scholar 

  • Seibert, P., Kromp-Kolb, H., Baltensperger, U., Jost, D.T., Schwikowski, M., Kaspar, A., Puxbaum, H.: Trajectory analysis of aerosol measurements at high alpine sites. In: Borrell, P.M., Borrell, P., Cvitas, T., Seiler, W. (eds.) Transport and transformation of pollutants in the troposphere, pp. 689–693. Academic Publishing, Den Haag (1994)

    Google Scholar 

  • Seinfeld, J.H., Pandis, S.N.: Atmospheric chemistry and physics: From air pollution to climate change - 2nd edition. Wiley, New York (2006)

    Google Scholar 

  • Stohl, A.: Trajectory statistics—A new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmos. Environ. 30(4), 579–587 (1996)

    Article  Google Scholar 

  • Stohl, A.: Computation, accuracy and applications of trajectories—A review and bibliography. Atmos. Environ. 32(6), 947–966 (1998)

    Article  Google Scholar 

  • Szidat, S., Jenk, T.M., Synal, H.A., Kalberer, M., Wacker, L., Hajdas, I., Kasper-Giebl, A., Baltensperger, U.: Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by C-14. J. Geophys. Res.-Atmos. 111(D7), D07206 (2006). doi:10.1029/2005jd006590

    Article  Google Scholar 

  • Szidat, S., Prevot, A.S.H., Sandradewi, J., Alfarra, M.R., Synal, H.A., Wacker, L., Baltensperger, U.: Dominant impact of residential wood burning on particulate matter in Alpine valleys during winter. Geophys. Res. Lett. 34(5), L05820 (2007). doi:10.1029/2006gl028325

    Article  Google Scholar 

  • Tauler, R., Viana, M., Querol, X., Alastuey, A., Flight, R.M., Wentzell, P.D., Hopke, P.K.: Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies. Atmos. Environ. 43(26), 3989–3997 (2009)

    Article  Google Scholar 

  • Thorpe, A., Harrison, R.M.: Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 400(1–3), 270–282 (2008)

    Google Scholar 

  • Viana, M., Kuhlbusch, T.A.J., Querol, X., Alastuey, A., Harrison, R.M., Hopke, P.K., Winiwarter, W., Vallius, A., Szidat, S., Prevot, A.S.H., Hueglin, C., Bloemen, H., Wahlin, P., Vecchi, R., Miranda, A.I., Kasper-Giebl, A., Maenhaut, W., Hitzenberger, R.: Source apportionment of particulate matter in Europe: A review of methods and results. J. Aerosol. Sci. 39(10), 827–849 (2008)

    Article  Google Scholar 

  • Viana, M., Maenhaut, W., Chi, X., Querol, X., Alastuey, A.: Comparative chemical mass closure of fine and coarse aerosols at two sites in south and west Europe: Implications for EU air pollution policies. Atmos. Environ. 41(2), 315–326 (2007)

    Article  Google Scholar 

  • Viana, M., Querol, X., Alastuey, A., Gil, J.I., Menendez, M.: Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. Chemosphere 65(11), 2411–2418 (2006)

    Article  Google Scholar 

  • Wagner, C., Hanisch, F., Holmes, N., de Coninck, H., Schuster, G., Crowley, J.N.: The interaction of N2O5 with mineral dust: aerosol flow tube and Knudsen reactor studies. Atmospheric Chemistry and Physics 8(1), 91–109 (2008)

    Article  Google Scholar 

  • Wehner, B., Wiedensohler, A.: Long term measurements of submicrometer urban aerosols: statistical analysis for correlations with meteorological conditions and trace gases. Atmos. Chem. Phys. 3, 867–879 (2003)

    Article  Google Scholar 

  • Wotawa, G., Kroger, H.: Testing the ability of trajectory statistics to reproduce emission inventories of air pollutants in cases of negligible measurement and transport errors. Atmos. Environ. 33(18), 3037–3043 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Pinxteren, D., Brüggemann, E., Gnauk, T. et al. A GIS based approach to back trajectory analysis for the source apportionment of aerosol constituents and its first application. J Atmos Chem 67, 1–28 (2010). https://doi.org/10.1007/s10874-011-9199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-011-9199-9

Keywords

Navigation