Skip to main content

Advertisement

Log in

ZIF-derived Co nanoparticle/N-doped CNTs composites embedded in N-doped carbon substrate as efficient electrocatalyst for hydrogen and oxygen evolution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, we report a bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) by pyrolysis of zeolitic imidazolate framework-67 (ZIF-67), melamine, and PVP composites solid gel. During the pyrolysis, ZIF-67 formed N and Co co-doped carbon nanotubes on the surface (Co@CNT/NC), melamine and PVP have been converted into N-doped carbon (NC) substrate. Our Co@CNT/NC composites display the overpotential of HER and OER at current density of 10 mA cm−2 only need 136 mV and 280 mV, respectively. The synergistic effect of catalytic active sites such as metallic Co, Co–N bond, and N-doped carbon, and the large specific surface area caused by special morphology of the materials, enabled the catalysts to exhibit superior catalytic performance of HER and OER. The work provides a new idea to construct highly efficient HER and OER dual-functional electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.A. Turner, Science 305, 972–974 (2004)

    CAS  Google Scholar 

  2. S. Dunn, Int. J. Hydrogen Energy 27, 235–264 (2002)

    CAS  Google Scholar 

  3. T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Int. J. Hydrogen Energy 27, 991–1022 (2002)

    CAS  Google Scholar 

  4. D.R. Gamelin, Nat. Chem. 4, 965–967 (2012)

    CAS  Google Scholar 

  5. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110, 6446–6473 (2010)

    CAS  Google Scholar 

  6. F. Emiliana, T.J. Schmidt, ACS Catal. 8, 9765–9774 (2018)

    Google Scholar 

  7. W.S. Zhi, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Science 355, 4998 (2017)

    Google Scholar 

  8. T. Kevin, Z.W. Ulissi, Nat. Catal. 1, 696–703 (2018)

    Google Scholar 

  9. J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Nat. Chem. 1, 37–46 (2009)

    Google Scholar 

  10. P. Balaya, H. Li, L. Kienle, J. Maier, Adv. Funct. Mater. 13, 621–625 (2010)

    Google Scholar 

  11. Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett. 3, 399–404 (2015)

    Google Scholar 

  12. H. Over, Y.D. Kim, A.P. Seitsonen, S. Wendt, E. Lundgren, M. Schmid, P. Varga, A. Morgante, G. Ertl, Science 287, 1474–1476 (2000)

    CAS  Google Scholar 

  13. N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T.-K. Sham, L.-M. Liu, Nat. Commun. 7, 13638 (2016)

    CAS  Google Scholar 

  14. B.Z. Zhan, M.A. White, T.K. Sham, J.A. Pincock, T.S. Cameron, J. Am. Chem. Soc. 125, 2195–2199 (2003)

    CAS  Google Scholar 

  15. R. Kötz, H.J. Lewerenz, S. Stucki, J. Electrochem. Soc. 130, 825 (1983)

    Google Scholar 

  16. R. Kötz, S. Stucki, Electrochim. Acta 31, 1311–1316 (1986)

    Google Scholar 

  17. E. Skúlason, G.S. Karlberg, J. Rossmeisl, T. Bligaard, J. Greeley, H. Jónsson, J.K. Nørskov, Phys. Chem. Chem. Phys. 9, 3241–3250 (2007)

    Google Scholar 

  18. D.V. Esposito, S.T. Hunt, A.L. Stottlemyer, K.D. Dobson, J.G. Chen, Angew. Chem. Int. Ed. 49, 9787 (2015)

    Google Scholar 

  19. J. Wang, Y. He, Q. Yang, H. Li, Z. Xie, Y. Fan, J. Chen, Int. J. Hydrogen Energy 44, 13205–13213 (2019)

    CAS  Google Scholar 

  20. Q. Yang, Y. He, Y. Fan, F. Li, X. Chen, J. Mater. Sci. 28, 7413–7418 (2017)

    CAS  Google Scholar 

  21. Q. Yang, Y. He, Y. Fan, X. Chen, Y. Li, Int. J. Hydrogen Energy 42, 6482–6489 (2016)

    Google Scholar 

  22. Q. Yang, H. Yi, Z. Changjun, W. Jizhuang, L. Hongjie, Q. Dayong, J. Solid State Electron. 22, 1–8 (2018)

    Google Scholar 

  23. S. Hussain, N. Ullah, Y. Zhang, N. Aslam, A. Shaheen, M.S. Javed, M. Wang, G. Liu, G. Qiao, J. Mater. Sci. 2, 105–127 (2019)

    Google Scholar 

  24. C. Liu, W. Ke, Z. Jin, X. Zheng, L. Qian, Z. Chen, J. Mater. Sci. 29, 10744–10752 (2018)

    CAS  Google Scholar 

  25. J. Zhou, L. Yundan, Z. Zhen, L. Jun, Q. Xiang, J. Mater. Sci. 29, 12300–12305 (2018)

    CAS  Google Scholar 

  26. H. Li, Y. He, Q. Yang, J. Wang, S. Yan, C. Chen, J. Chen, J. Solid State Chem. 278, 120843 (2019)

    CAS  Google Scholar 

  27. M.Q. Wang, C. Ye, H. Liu, M. Xu, S.J. Bao, Angew. Chem. Int. Ed. 130, 1963–1967 (2018)

    Google Scholar 

  28. S. Huang, Y. Meng, S. He, A. Goswami, M. Wu, Adv. Funct. Mater. 27, 1606585 (2017)

    Google Scholar 

  29. C. Hu, L. Dai, Adv. Mater. 29, 1604942 (2017)

    Google Scholar 

  30. X. Zhang, R. Liu, Y. Zang, G. Liu, G. Wang, Y. Zhang, H. Zhang, H. Zhao, Chem. Commun. 52, 5946–5949 (2016)

    CAS  Google Scholar 

  31. L. Zhang, W. Liu, W. Shi, X. Xu, J. Mao, P. Li, C. Ye, R. Yin, S. Ye, X. Liu, X. Cao, C. Gao, Chemistry 24, 13792–13799 (2018)

    CAS  Google Scholar 

  32. Z. Peng, Y. Yu, D. Jiang, Y. Wu, B.Y. Xia, Z. Dong, Carbon 144, 464–471 (2019)

    CAS  Google Scholar 

  33. H. Han, S. Chao, X. Yang, X. Wang, K. Wang, Z. Bai, L. Yang, Int. J. Hydrogen Energy 42, 16149–16156 (2017)

    CAS  Google Scholar 

  34. J. Wang, W. Liu, G. Luo, Z. Li, Y. Li, Energy Environ. Sci. 11, 3375–3379 (2019)

    Google Scholar 

  35. K. Wang, C. Liu, W. Wang, N. Mitsuzaki, Z. Chen, J. Mater. Sci. 30, 4144–4151 (2019)

    CAS  Google Scholar 

  36. F. Cui, W. Chen, L. Jin, H. Zhang, Z. Jiang, Z. Song, J. Mater. Sci. 23, 19697–19709 (2019)

    Google Scholar 

  37. S. Guo, Y. Yang, N. Liu, Q. Shi, H. Huang, Y. Liu, Z. Kang, Sci. Bull. 61, 68–77 (2016)

    CAS  Google Scholar 

  38. H. Guo, Q. Feng, J. Zhu, J. Xu, Q. Li, S. Liu, K. Xu, C. Zhang, T. Liu, J. Mater. Chem. A. 7, 3664–3672 (2019)

    CAS  Google Scholar 

  39. M. Xiao, Y. Meng, C. Duan, F. Zhu, Y. Zhang, J. Mater. Sci. 30, 6148–6156 (2019)

    CAS  Google Scholar 

  40. B. Marcin, C. Xuecheng, M. Ewa, ChemElectroChem. 5, 2681–2685 (2018)

    Google Scholar 

  41. S. Yang, M. Xie, L. Chen, W. Wei, X. Lv, Y. Xu, N. Ullah, O.C. Judith, Y.B. Adegbemiga, J. Xie, Int. J. Hydrogen Energy 44, 4543–4552 (2019)

    CAS  Google Scholar 

  42. L. Hu, Y. Hu, R. Liu, Y. Mao, M.S. Balogun, Y. Tong, Int. J. Hydrogen Energy 44, 11402–11410 (2019)

    CAS  Google Scholar 

  43. B. Chen, G. Ma, Y. Zhu, Y. Xia, Sci. Rep. 7, 5266 (2017)

    Google Scholar 

  44. X. Li, J. Wei, Q. Li, S. Zheng, Y. Xu, P. Du, C. Chen, J. Zhao, H. Xue, Q. Xu, Adv. Funct. Mater. 28, 1800886 (2018)

    Google Scholar 

  45. S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan, H. Fu, Angew. Chem. Int. Ed. 55, 1830–1834 (2016)

    CAS  Google Scholar 

  46. C. Gumeci, N. Leonard, Y. Liu, S. McKinney, B. Halevi, S.C. Barton, J. Mater. Chem. A 3, 21494–21500 (2015)

    CAS  Google Scholar 

  47. Z. Sun, F. Huang, Y. Sui, F. Wei, J. Qi, Q. Meng, H. Hu, Y. He, J. Mater. Sci. 28, 14019–14025 (2017)

    CAS  Google Scholar 

  48. S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. Ren, Y. He, J. Colloid Interface Sci. 531, 83–90 (2018)

    CAS  Google Scholar 

  49. R.M. Abdelhameed, H.E. Emam, J Colloid Interf Sci. 552, 494–505 (2019)

    CAS  Google Scholar 

  50. R.M. Abdelhameed, M. El-Shahat, J. Environ. Chem. Eng. 7, 103194 (2019)

    CAS  Google Scholar 

  51. Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W.C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 140, 2610–2618 (2018)

    CAS  Google Scholar 

  52. B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou, X. Wang, Nat. Energy. 1, 15006 (2016)

    CAS  Google Scholar 

  53. Z. Xie, Y. Wang, Electrochim. Acta 296, 372–378 (2019)

    CAS  Google Scholar 

  54. L. Jiao, Y.X. Zhou, H.L. Jiang, Chem. Sci. 7, 1690–1695 (2016)

    CAS  Google Scholar 

  55. C.-Z. Yuan, S.-L. Zhong, Y.-F. Jiang, Z.K. Yang, Z.-W. Zhao, S.-J. Zhao, N. Jiang, A.-W. Xu, J. Mater. Chem. A. 5, 10561–10566 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51774245), Applied Basic Research Projects of Science and Technology Department of Sichuan Province (No. 2018JY0517), Science and Technology Support Project of Sichuan Province (2015RZ0023), Open Fund (PLN201806) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Youth science and technology creative group fund of Southwest Petroleum University (2015CXTD03), and Research Center of Energy polymer materials of Southwest Petroleum University and Chengdu Ceshigo Research Service Co., Ltd (http://www.ceshigo.com/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi He or Jingyu Chen.

Ethics declarations

Conflict and interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., He, Y., He, T. et al. ZIF-derived Co nanoparticle/N-doped CNTs composites embedded in N-doped carbon substrate as efficient electrocatalyst for hydrogen and oxygen evolution. J Mater Sci: Mater Electron 30, 21388–21397 (2019). https://doi.org/10.1007/s10854-019-02516-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02516-1

Navigation