Skip to main content
Log in

ZnO flower/PEDOT:PSS thermoelectric composite films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO flower/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) composite films were prepared by spin-coating dimethyl sulfoxide doped PEDOT:PSS on the ZnO flowers grown on glass substrate. The thermoelectric properties of the ZnO flower/PEDOT:PSS composite films were measured at room temperature. As the number of spin coated PEDOT:PSS layer increased, the electrical conductivity of the ZnO flower/PEDOT:PSS composite films increases dramatically from 1-layer (177.3 S/m) to 4-layer (910.4 S/m), however, all the composite films have almost the same Seebeck coefficient (~20–22 μV/K). A maximum power factor of ~0.4 μWm−1 K−2 at room temperature was obtained from the composite film with 4-layer PEDOT:PSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 2229–2232 (2002)

    Article  Google Scholar 

  2. F.J. DiSalvo, Science 285, 703–706 (1999)

    Article  Google Scholar 

  3. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Science 321, 554–557 (2008)

    Article  Google Scholar 

  4. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Science 303, 818–821 (2004)

    Article  Google Scholar 

  5. Y. Du, S.Z. Shen, K.F. Cai, P.S. Casey, Prog. Polym. Sci. 37, 820–841 (2012)

    Article  Google Scholar 

  6. G.H. Kim, L. Shao, K. Zhang, K.P. Pipe, Nat. Mater. 12, 719–723 (2013)

    Article  Google Scholar 

  7. K.C. See, J.P. Feser, C.E. Chen, A. Majumdar, J.J. Urban, R.A. Segalman, Nano Lett. 10, 4664–4667 (2010)

    Article  Google Scholar 

  8. S. Xu, Z.L. Wang, Nano Res. 4, 1013–1098 (2011)

    Article  Google Scholar 

  9. M.H. Hong, C.S. Park, S. Shin, H.H. Cho, W.S. Seo, Y.S. Lim, J.K. Lee, H.H. Park, J. Nanomater. 2013, 172504 (2013)

    Google Scholar 

  10. N.N. Wang, H.X. Xin, D. Li, X.J. Li, J. Zhang, X.Y. Qin, J. Phys. Chem. Solids 74, 1811–1815 (2013)

    Article  Google Scholar 

  11. H. Kaga, Y. Kinemuchi, H. Yilmaz, K. Watari, H. Nakano, H. Nakano, S. Tanaka, A. Makiya, Z. Kato, K. Uematsu, Acta Mater. 55, 4753–4757 (2007)

    Article  Google Scholar 

  12. K.F. Cai, E. Muller, C. Drasar, A. Mrotzek, Mater. Sci. Eng., B 104, 45–48 (2003)

    Article  Google Scholar 

  13. T.H. Fang, S.H. Kang, J. Alloy. Compd. 492, 536–542 (2010)

    Article  Google Scholar 

  14. H. Colder, E. Guilmeau, C. Harnois, S. Marinel, R. Retoux, E. Savary, J. Eur. Ceram. Soc. 31, 2957–2963 (2011)

    Article  Google Scholar 

  15. L. Fang, X.F. Yang, L.P. Peng, K. Zhou, F. Wu, Q.L. Huang, C.Y. Kong, J. Supercond. Nov. Magn. 23, 889–892 (2010)

    Article  Google Scholar 

  16. M. Ohtaki, K. Araki, K. Yamamoto, J. Electron. Mater. 38, 1234–1238 (2009)

    Article  Google Scholar 

  17. Y. Du, K.F. Cai, S.Z. Shen, W.D. Yang, P.S. Casey, J. Mater. Sci.: Mater. Electron. 24, 1702–1706 (2013)

    Google Scholar 

  18. Y. Du, K.F. Cai, S. Chen, P. Cizek, T. Lin, ACS Appl. Mater. Interfaces 6, 5735–5743 (2014)

    Article  Google Scholar 

  19. J.P. Liu, X.T. Huang, Y.Y. Li, J.X. Duan, H.H. Ai, Mater. Chem. Phys. 98, 523–527 (2006)

    Article  Google Scholar 

  20. R. Wahab, Y.S. Kim, A. Mishra, S.I. Yun, H.S. Shin, Nanoscale Res. Lett. 5, 1675–1681 (2010)

    Article  Google Scholar 

  21. T. Zhang, Y. Zeng, H.T. Fan, L.J. Wang, R. Wang, W.Y. Fu, H.B. Yang, J. Phys. D Appl. Phys. 42, 045103 (2009)

    Article  Google Scholar 

  22. R.A. Laudise, A.A. Ballman, J. Phys. Chem. 64, 688–691 (1960)

    Article  Google Scholar 

  23. G.X. Tong, F.F. Du, Y. Liang, Q. Hu, R.N. Wu, J.G. Guan, X. Hu, J. Mater. Chem. B 1, 454–463 (2013)

    Article  Google Scholar 

  24. J. Li, J.C. Liu, C.J. Gao, J. Polym. Res. 17, 713–718 (2010)

    Article  Google Scholar 

  25. C.C. Liu, F.X. Jiang, M.Y. Huang, B.Y. Lu, R.R. Yue, J.K. Xu, J. Electron. Mater. 40, 948–952 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61504081), the Program for Professor of Special Appointment (Young Eastern Scholar Program) at Shanghai Institutions of Higher Learning (QD2015039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Cai, K., Shen, S.Z. et al. ZnO flower/PEDOT:PSS thermoelectric composite films. J Mater Sci: Mater Electron 27, 10289–10293 (2016). https://doi.org/10.1007/s10854-016-5111-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5111-3

Keywords

Navigation