Skip to main content
Log in

Electron spin resonance study and improved magnetic and dielectric properties of Gd–Ti co-substituted BiFeO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polycrystalline BiFeO3 (BFO), Bi0.90Gd0.10FeO3 (BGF), Bi0.90Gd0.10Fe1−xTixO3 (x = 0.03–0.10; BGFTx) ceramics were prepared via solid state reaction method. X-ray diffraction studies reveal R3c symmetry for BFO and BGF samples and coexistence of R3c + Pn2 1 a symmetries for BGFTx samples. The change in line width of Raman modes indicates the structural distortion and substitution of dopants ions in the BFO lattice. Magnetic studies show weak ferromagnetism in BGF and BGFTx samples as a result of Gd3+–Fe3+, Gd3+–Gd3+ interactions and imbalance created between two antiparallel Fe3+ spin sublattices by Ti substitution. The maximum remnant magnetization of 0.141 emu/g is observed for BGFTx=0.10 sample. Further, electron spin resonance study confirms the weak ferromagnetism of BGFTx samples, associated with small grains and increase in anisotropy of particles distribution as found during SEM studies. UV–Visible absorption spectra in the spectral range from 1.6 to 3.5 eV showed one d–d crystal field transition and two charge-transfer transitions with optical band gap variation in visible region. Improved dielectric properties with very low values of dielectric loss have been observed for BGF and BGFTx samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  Google Scholar 

  2. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007)

    Article  Google Scholar 

  3. J. Wang et al., Science 299, 1719 (2003)

    Article  Google Scholar 

  4. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag, O. Eriksson, Phys. Rev. B 74, 224412 (2006)

    Article  Google Scholar 

  5. R. Das, T. Sarkar, K. Mandal, J. Phys. D Appl. Phys. 45, 455002 (2012)

    Article  Google Scholar 

  6. M. Arora, P.C. Sati, S. Chauhan, H. Singh, K.L. Yadav, S. Chhoker, M. Kumar, Mater. Lett. 96, 71 (2013)

    Article  Google Scholar 

  7. J. Xu, G. Ye, M. Zeng, J. Alloys Compd. 587, 308 (2014)

    Article  Google Scholar 

  8. X. Zhang, Y. Sui, X. Wang, Y. Wang, Z. Wang, J. Alloys Compd. 507, 157 (2010)

    Article  Google Scholar 

  9. J.B. Li, G.H. Rao, Y. Xiao, J.K. Liang, J. Luo, G.Y. Liu, J.R. Chen, Acta Mater. 58, 3701 (2010)

    Article  Google Scholar 

  10. H. Wu, Y.B. Lin, J.J. Gong, F. Zhang, M. Zeng, M.H. Qin, Z. Zhang, Q. Ru, Z.W. Liu, X.S. Gao, J.M. Liu, J. Phys. D Appl. Phys. 46, 145001 (2013)

    Article  Google Scholar 

  11. M. Kumar, K.L. Yadav, J. Appl. Phys. 100, 074111 (2006)

    Article  Google Scholar 

  12. J. Wei, R. Haumont, R. Jarrier, P. Berhtet, B. Dkhil, Appl. Phys. Lett. 96, 102509 (2010)

    Article  Google Scholar 

  13. M.A. Basith, O. Kurni, M.S. Alam, B.L. Sinha, B. Ahmmad, J. Appl. Phys. 115, 024102 (2014)

    Article  Google Scholar 

  14. Y.F. Cui, Y.G. Zhao, L.B. Luo, J.J. Yang, H. Chang, M.H. Zhu, D. Xie, T.L. Ren, Appl. Phys. Lett. 97, 222904 (2010)

    Article  Google Scholar 

  15. Reetu, A. Agarwal, S. Sanghi, Ashima, J. Appl. Phys. 110, 073909 (2011)

  16. G.Y. Hong, L. Yong, Y. Chao, M.Y. Wei, W. Yu, C.H.L. Wah, C.W. Ping, Chin. Phys. B 23, 037501 (2014)

    Article  Google Scholar 

  17. N.M. Murari, R. Thomas, R.E. Melgarejo, S.P. Pavunny, R.S. Katiyar, J. Appl. Phys. 106, 014103 (2009)

    Article  Google Scholar 

  18. A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, J. Mater. Chem. C (2014). doi:10.1039/C4TC00591K

    Google Scholar 

  19. P. Hermet, M. Goffinet, J. Kreisel, P. Ghosez, Phys. Rev. B 75, 220102 (2007)

    Article  Google Scholar 

  20. S.T. Zhang, Y. Zhang, M.H. Lu, C.L. Du, Y.F. Chen, Z.G. Liu, Y.Y. Zhu, N.B. Ming, X.Q. Pan, Appl. Phys. Lett. 88, 162901 (2006)

    Article  Google Scholar 

  21. V.V. Lazenka, G. Zhang, J. Vanacken, I.I. Makoed, A.F. Ravinski, V.V. Moshchalkov, J. Phys. D Appl. Phys. 45, 125002 (2012)

    Article  Google Scholar 

  22. A. Manzoor, S.K. Hasanain, A. Mumtaz, M.F. Bertino, L. Franzel, J. Nanopart. Res. 14, 1310 (2012)

    Article  Google Scholar 

  23. L.Y. Zou, R.P. Yang, Y.B. Lin, M.H. Qin, X.S. Gao, M. Zeng, J.-M. Liu, J. Appl. Phys. 114, 034105 (2013)

    Article  Google Scholar 

  24. F. Hong, Z. Cheng, J. Wang, X. Wang, S. Dou, Appl. Phys. Lett. 101, 102411 (2012)

    Article  Google Scholar 

  25. Y. Guo, L. Shi, S. Zhou, J. Zhao, C. Wang, W. Liu, S. Wei, J. Phys. D Appl. Phys. 46, 175302 (2013)

    Article  Google Scholar 

  26. L. Wu, C. Dong, H. Chen, J. Yao, C. Jiang, D. Xue, J. Am. Ceram. Soc. 95, 3922 (2012)

    Article  Google Scholar 

  27. J. Kliava, A. Malakhovskii, I. Edelman, A. Potseluyko, E. Petrakovskaja, S. Melnikova, T. Zarubina, G. Petrovskii, Y. Bruckental, Y. Yeshurun, Phys. Rev. B 71, 104406 (2005)

    Article  Google Scholar 

  28. E.M. Szablewska, M. Safarikova, I. Safarik, J. Phys. D Appl. Phys. 40, 6490 (2007)

    Article  Google Scholar 

  29. M. Açıkgöz, M.D. Drahus, A. Ozarowski, J.V. Tol, S. Weber, E. Erdem, J. Phys. Condens. Matter 26, 155803 (2014)

    Article  Google Scholar 

  30. M.O. Ramirez, A. Kumar, S.A. Denav, N.J. Podraza et al., Phys. Rev. B 79, 224106 (2009)

    Article  Google Scholar 

  31. R.V. Pisarev, A.S. Moskvin, A.M. Kalashinkova, T. Rasing, Phys. Rev. B 79, 235128 (2009)

    Article  Google Scholar 

  32. S.J. Kim, S.H. Han, H.G. Kim, A.Y. Kim, J.S. Kim, C.I. Cheon, J. Korean Phys. Soc. 56, 439 (2010)

    Article  Google Scholar 

  33. K. Chakrabarti, K. Das, B. Sarkar, S.K. De, J. Appl. Phys. 110, 103905 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Department of science and Technology (DST), India through Grant No. SR/FTP/PS-91/2009. Prakash Chandra Sati is also thankful to DST for providing INSPIRE Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Sati, P.C. & Chhoker, S. Electron spin resonance study and improved magnetic and dielectric properties of Gd–Ti co-substituted BiFeO3 ceramics. J Mater Sci: Mater Electron 25, 5366–5374 (2014). https://doi.org/10.1007/s10854-014-2315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2315-2

Keywords

Navigation