Skip to main content
Log in

Screen-printed single-walled carbon nanotube networks and their use for dimethyl methylphosphonate detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotube (SWNT) films were prepared on silicon/silica substrates by screen-printed technique at a wafer scale, and their sensing properties to dimethyl methylphosphonate (DMMP) were studied. The SWNT networks were characterized by field-emission scanning electron microscope. The resistance responses to different concentrations of DMMP vapors were investigated at room temperature. The results showed that the resistance changes of the screen-printed SWNT films increased rapidly in varying concentrations ranging from 20 to 200 ppm. The sensor exhibited high resistance responses, good reproducibility and excellent long-term stability for DMMP vapor detection. The screen-printed SWNT networks would be potentially extended to large-scale, low cost and simple manufacturing sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Chauhan, S. Chauhan, R. D’Cruz, S. Faruqi, K.K. Singh, S. Varma, M. Singh, V. Karthik, Environ. Toxicol. Pharmacol. 26, 113 (2008)

    Article  CAS  Google Scholar 

  2. K. Kuča, M. Pohanka, Mol. Clin. Environ. Toxicol. 100, 543 (2010)

    Article  Google Scholar 

  3. J. Kassa, Clin. Toxicol. 40, 803 (2002)

    Article  CAS  Google Scholar 

  4. F. Wang, H. Gu, T.M. Swager, J. Am. Chem. Soc. 130, 5392 (2008)

    Article  CAS  Google Scholar 

  5. D. Eder, Chem. Rev. 110, 1348 (2010)

    Article  CAS  Google Scholar 

  6. G.F. Malgas, C.J. Arendse, N.P. Cele, F.R. Cummings, J. Mater. Sci. 43, 1020 (2008)

    Article  CAS  Google Scholar 

  7. D.R. Kauffman, A. Star, Angew. Chem. Int. Ed. 47, 6550 (2008)

    Article  CAS  Google Scholar 

  8. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787 (2002)

    Article  CAS  Google Scholar 

  9. V. Krstic, G.S. Duesberg, J. Muster, M. Burghard, S. Roth, Chem. Mater. 10, 2338 (1998)

    Article  CAS  Google Scholar 

  10. H. Paloniemi, M. Lukkarinen, T. Aaritalo, S. Areva, J. Leiro, M. Heinonen, K. Haapakka, J. Lukkari, Langmuir 22, 74 (2006)

    Article  CAS  Google Scholar 

  11. E.Y. Jang, T.J. Kang, H.W. Im, D.W. Kim, Y.H. Kim, Small 4, 2255 (2008)

    Article  CAS  Google Scholar 

  12. A.R. Boccaccini, J. Cho, J.A. Roether, B.J.C. Thomas, E.J. Minay, M.S.P. Shaffer, Carbon 44, 3149 (2006)

    Article  CAS  Google Scholar 

  13. L. Hu, D.S. Hecht, G. Grüner, Chem. Rev. 110, 5790 (2010)

    Article  CAS  Google Scholar 

  14. Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, Y. Zhang, Nanotechnology 20, 345502 (2009)

    Article  Google Scholar 

  15. Y. Wang, Z. Yang, Z. Hou, D. Xu, L. Wei, E.S.-W. Kong, Y. Zhang, Sens. Actuators B 150, 708 (2010)

    Article  Google Scholar 

  16. L. Wei, D. Shi, P. Ye, Z. Dai, H. Chen, C. Chen, J. Wang, L. Zhang, D. Xu, Z. Wang, Y. Zhang, Nanotechnology 22, 425501 (2011)

    Article  Google Scholar 

  17. K. Cattanach, R.D. Kulkarni, M. Kozlov, S.K. Manohar, Nanotechnology 17, 4123 (2006)

    Article  CAS  Google Scholar 

  18. J. Wang, M. Musameh, Analyst 129, 1 (2004)

    Article  CAS  Google Scholar 

  19. J.-H. Park, G.-H. Son, J.-S. Moon, J.-H. Han, A.S. Berdinsky, D.G. Kuvshinov, J.-B. Yoo, C.-Y. Park, J. Vac. Sci. Technol. B 23, 749 (2005)

    Article  CAS  Google Scholar 

  20. J. Wang, Electroanalysis 17, 7 (2005)

    Article  CAS  Google Scholar 

  21. G. Li, J.M. Liao, G.Q. Hu, N.Z. Ma, P.J. Wu, Biosens. Bioelectron. 20, 2140 (2005)

    Article  CAS  Google Scholar 

  22. S. Sánchez, M. Pumera, E. Cabruja, E. Fàbregas, Analyst 132, 142 (2007)

    Article  Google Scholar 

  23. W.-J. Guan, Y. Li, Y.-Q. Chen, X.-B. Zhang, G.-Q. Hu, Biosens. Bioelectron. 21, 508 (2005)

    Article  CAS  Google Scholar 

  24. Y. Ye, H. Ju. Biosens. Bioelectron. 21, 735 (2005)

    Article  CAS  Google Scholar 

  25. S. Sánchez, M. Pumera, E. Fàbregas, Biosens. Bioelectron. 23, 332 (2007)

    Article  Google Scholar 

  26. G. Li, H. Xu, W. Huang, Y. Wang, Y. Wu, R. Parajuli, Meas. Sci. Technol. 19, 065203 (2008)

    Article  Google Scholar 

  27. K. Yu, Y.S. Zhang, F. Xu, Q. Li, Z.Q. Zhu, Q. Wan, Appl. Phys. Lett. 88, 153123 (2006)

    Article  Google Scholar 

  28. H.J. Lee, Y.D. Lee, S. Il Moon, W.S. Cho, Y.-H. Lee, J.K. Kim, S.W. Hwang, B.K. Ju, Carbon 44, 2625 (2006)

    Article  CAS  Google Scholar 

  29. H.J. Lee, Y.D. Lee, W.S. Cho, B.K. Ju, Y.-H. Lee, J.H. Han, J.K. Kim, Appl. Phys. Lett. 88, 093115 (2006)

    Article  Google Scholar 

  30. D.-H. Kim, C.-D. Kim, H.R. Lee, Carbon 42, 1807 (2004)

    Article  CAS  Google Scholar 

  31. E.S. Snow, F.K. Perkins, E.J. Houser, S.C. Badescu, T.L. Reinecke, Science 307, 1942 (2005)

    Article  CAS  Google Scholar 

  32. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287, 622 (2000)

    Article  CAS  Google Scholar 

  33. P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, S. Peng, K. Cho, Nano Lett. 3, 347 (2003)

    Article  CAS  Google Scholar 

  34. J.P. Novak, E.S. Snow, E.J. Houser, D. Park, J.L. Stepnowski, R.A. McGill, Appl. Phys. Lett. 83, 4026 (2003)

    Article  CAS  Google Scholar 

  35. E.S. Snow, J.P. Novak, P.M. Campbell, D. Park, Appl. Phys. Lett. 82, 2145 (2003)

    Article  CAS  Google Scholar 

  36. Q. Cao, J.A. Rogers, Adv. Mater. 21, 29 (2009)

    Article  CAS  Google Scholar 

  37. J.A. Robinson, E.S. Snow, S.C. Bădescu, T.L. Reinecke, F.K. Perkins, Nano Lett. 6, 1747 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China via Grant Nos. 60736005 and 60876051, the Foundation for Innovation Groups of NSFC via No. 61021061, and the Program for New Century Excellent Talents in University via Grant no. NCET-08-0086. The authors would like to thank Chengdu Organic Chemicals Co. Ltd. of China and Yun Ye of Fuzhou University for help with the screen-printed SWNTs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Jing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jing, H., Jiang, Y. & Du, X. Screen-printed single-walled carbon nanotube networks and their use for dimethyl methylphosphonate detection. J Mater Sci: Mater Electron 23, 1823–1829 (2012). https://doi.org/10.1007/s10854-012-0669-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0669-x

Keywords

Navigation