Skip to main content
Log in

Enhancement of electrical conductivity in aluminum single crystals by boron treatment in solid state

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrical conductivity/resistivity of elemental fcc metals, such as Al and Cu, has been investigated intensively for decades, both theoretically and experimentally. Since these metals are of great practical importance for electrical wiring, reducing their resistivity even by a few percent may have very strong impact on their application effectiveness. In this paper, we report on electrical resistivity measurements in Al single crystals grown by the Bridgman method. We found that their resistivity at room temperature decreases by 11.5% upon heat treatment in a boron environment at 600 °C, i.e., well below the melting temperature of Al (Tm = 660 °C). The residual resistivity indeed reaches its lower limit dictated by electron–phonon interaction at room temperature. We explain this effect by the boron-induced formation of distorted regions at the surface of the Al crystals. These regions are 30–50 μm in size and comprise finer grains with an average size of 5 μm, separated by low-angle grain boundaries. Resistivity reduction is mainly due to the getter effect, i.e., the removal of the impurity atoms from the crystal bulk by the outward diffusion to the distorted surface regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Fickett FR (1971) Aluminum. A review of resistive mechanisms in aluminum. Cryogenics 10:349–366

    Article  Google Scholar 

  2. Lifshitz BG, Kraposhin VS, Linezky YL (1980) Physical properties of metals and alloys. Metallurgia Press, Moscow, p 319

    Google Scholar 

  3. Rositter PL (2003) The electrical resistivity of metals and alloys. Cambridge University Press, Cambridge

    Google Scholar 

  4. Valiev RZ, Murashkin MYu, Sabirov I (2014) A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity. Scripta Mater 76:13–16

    Article  CAS  Google Scholar 

  5. Ziman JM (1979) Principles of the theory of solids. Cambridge University Press, Cambridge

    Google Scholar 

  6. Gall D (2016) Electron mean free path in elemental metals. J Appl Phys 119:085101

    Article  Google Scholar 

  7. Crystal Growth Technology (2011) From fundamentals and simulation to large-scale production. In: Scheel HJ, Capper P (eds) Wiley-VCH Verlag, p 497

  8. Pouraliakbar H, Jandaghi MR, Khalaj G (2017) Constrained groove pressing and subsequent annealing of Al–Mn–Si alloy: microstructure evolutions, crystallographic transformations, mechanical properties, electrical conductivity and corrosion resistance. Mater Des 124:34–46

    Article  CAS  Google Scholar 

  9. Jandaghi MR, Pouraliakbar H (2018) Elucidating the microscopic origin of electrochemical corrosion and electrical conductivity by lattice response to severe plastic deformation in Al–Mn–Si alloy. Mater Res Bull 108:195–206

    Article  CAS  Google Scholar 

  10. Hashimoto E, Ueda Y, Kino T (1995) Purification of ultra-high purity aluminium. J de Physique IV 5:153–157

    Google Scholar 

  11. Ueda Y, Hashimoto E, Tamura H, Kino T (1995) Anisotropy of electrical resistivity in high purity aluminium single crystals. J de Physique IV 5:287–292

    Google Scholar 

  12. Alamdari HD, Dube D, Tessier P (2013) Behavior of boron in molten aluminum and its grain refinement mechanism. Metal Mater Trans A 44:388–394

    Article  CAS  Google Scholar 

  13. Marcantonio JA, Mondolfo LF (1971) Grain refinement in aluminum alloyed with titanium and boron. Metal Trans 2:465–471

    Article  CAS  Google Scholar 

  14. Molodov DA, Ivanov VA, Gottstein G (2007) Low angle tilt boundary migration coupled to shear deformation. Acta Mater 55:1843–1848

    Article  CAS  Google Scholar 

  15. Faran F, Gotman I, Gutmanas EY (2000) Experimental study of the reaction zone at boron nitride ceramic–Ti metal interface. Mater Sci Eng A 288:66–74

    Article  Google Scholar 

  16. David M, Connétable D (2017) Diffusion of interstitials in metallic systems, illustration of a complex study case: aluminum. J Phys Condens Matter 29:1361–1368

    Article  Google Scholar 

  17. de Boor J, Stiewe C, Ziolkowski P, Dasgupta T, Karpinski G, Lenz E, Edler F, Mueller E (2013) High-temperature measurement of Seebeck coefficient and electrical conductivity. J Electron Mater 42:1711–1718

    Article  CAS  Google Scholar 

  18. Graff A, Amouyal Y (2016) Effects of lattice defects and niobium doping on thermoelectric properties of calcium manganate compounds for energy harvesting applications. J Electron Mater 45:1508–1516

    Article  CAS  Google Scholar 

  19. Sheskin A, Schwarz T, Yu Y, Zhang S, Abdellaoui L, Gault B, Cojocaru- Mirédin O, Scheu C, Raabe D, Wuttig M, Amouyal Y (2018) Tailoring thermoelectric transport properties of Ag-alloyed PbTe: effects of microstructure evolution. ACS Appl Mater Interfaces 10:38994–39001

    Article  CAS  Google Scholar 

  20. Koresh I, Amouyal Y (2017) J Eur Ceram Soc 37:3541–3550

    Article  CAS  Google Scholar 

  21. Hughes DA, Hansen N (2000) Microstructure and strength of nickel at large strains. Acta Mater 48:2985–3004

    Article  CAS  Google Scholar 

  22. Cockayne D, Ray I, Whelan M (1969) Investigations of dislocation strain fields using weak beams. Phil Mag 20:1265–1270

    Article  CAS  Google Scholar 

  23. Zolotoyabko E (2014) Basic concepts of X-ray diffraction. Wiley-VCH, Weinheim

    Google Scholar 

  24. Simmons RO, Balluffi RW (1960) Measurements of equilibrium vacancy concentrations in aluminum. Phys Rev 117:52–61

    Article  CAS  Google Scholar 

  25. Duschanek H, Rogl P (1994) The AI-B (aluminum-boron) system. J Phase Equilib 15:542–552

    Article  Google Scholar 

  26. Wright SI, Novell MM, Field DP (2011) A review of strain analysis using electron backscatter diffraction. Microsc Microanal 17:316–329

    Article  CAS  Google Scholar 

  27. Seidel TE, Meek RL, Cullis AG (1975) Direct comparison of ion-damage gettering and phosphorus-diffusion gettering of Au in Si. J Appl Phys 46:600–609

    Article  CAS  Google Scholar 

  28. Kang JS, Schroder DK (1989) Gettering in silicon. J Appl Phys 65:2974–2985

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prof. R. Lapovok acknowledges the Marie Curie Fellowship within the EU Framework Program for Research and Innovation ‘HORIZON 2020’ (Grant - 742098). We thank Dr. T. Kravchuk for her help with TOF–SIMS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rimma Lapovok.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapovok, R., Amouyal, Y., Qi, Y. et al. Enhancement of electrical conductivity in aluminum single crystals by boron treatment in solid state. J Mater Sci 55, 2564–2577 (2020). https://doi.org/10.1007/s10853-019-04070-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04070-x

Navigation