Skip to main content
Log in

One-step preparation of graphene nanosheets via ball milling of graphite and the application in lithium-ion batteries

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An improved method for mass production of good-quality graphene nanosheets (GNs) via ball milling pristine graphite with dry ice is presented. We also report the enhanced performance of these GNs as working electrode in lithium-ion batteries (LIBs). In this improved method, the decrease of necessary ball milling time from 48 to 24 h and the increase of Brunauer–Emmett–Teller surface area from 389.4 to 490 m2/g might be resulted from the proper mixing of stainless steel balls with different diameters and the optimization of agitation speed. The as-prepared GNs are investigated in detail using a number of techniques, such as scanning electron microscope, atomic force microscope, high-resolution transmission electron microscopy, selected area electron diffraction, X-ray diffractometer, and Fourier transform infrared spectroscopic. To demonstrate the potential applications of these GNs, the performances of the LIBs with pure Fe3O4 electrode and Fe3O4/graphene (Fe3O4/G) composite electrode were carefully evaluated. Compared to Fe3O4-LIBs, Fe3O4/G-LIBs exhibited prominently enhanced performance and a reversible specific capacity of 900 mAh g−1 after 5 cycles at 100 and 490 mAh g−1 after 5 cycles at 800 mA g−1. The improved cyclic stability and enhanced rate capability were also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145

    Article  Google Scholar 

  2. CeNeR Rao, AeK Sood, KeS Subrahmanyam, Govindaraj A (2009) Graphene: The new two-dimensional nanomaterial. Angew Chem Int Ed 48(42):7752–7777

    Article  Google Scholar 

  3. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  Google Scholar 

  4. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314

    Article  Google Scholar 

  5. Liu Z, Liu J, Cui L, Wang R, Luo X, Barrow CJ, Yang W (2013) Preparation of graphene/polymer composites by direct exfoliation of graphite in functionalised block copolymer matrix. Carbon 51:148–155

    Article  Google Scholar 

  6. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196

    Article  Google Scholar 

  7. Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  8. Xing T, Sunarso J, Yang W, Yin Y, Glushenkov AM, Li LH, Howlett PC, Chen Y (2013) Ball milling: a green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles. Nanoscale 5(17):7970–7976

    Article  Google Scholar 

  9. León V, Quintana M, Herrero MA, Fierro JL, de la Hoz A, Prato M, Vázquez E (2011) Few-layer graphenes from ball-milling of graphite with melamine. Chem Commun 47(39):10936–10938

    Article  Google Scholar 

  10. León V, Rodriguez AM, Prieto P, Prato M, Vázquez E (2014) Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions. ACS Nano 8(1):563–571

    Article  Google Scholar 

  11. Liu L, Xiong Z, Hu D, Wu G, Chen P (2013) Production of high quality single-or few-layered graphene by solid exfoliation of graphite in the presence of ammonia borane. Chem Commun 49(72):7890–7892

    Article  Google Scholar 

  12. Yan L, Lin M, Zeng C, Chen Z, Zhang S, Zhao X, Wu A, Wang Y, Dai L, Qu J (2012) Electroactive and biocompatible hydroxyl-functionalized graphene by ball milling. J Mater Chem 22(17):8367–8371

    Article  Google Scholar 

  13. Jeon I-Y, Shin Y-R, Sohn G-J, Choi H-J, Bae S-Y, Mahmood J, Jung S-M, Seo J-M, Kim M-J, Chang DW (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci 109(15):5588–5593

    Article  Google Scholar 

  14. Wang JZ, Zhong C, Wexler D, Idris NH, Wang ZX, Chen LQ, Liu HK (2011) Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Chem A Eur J 17(2):661–667

    Article  Google Scholar 

  15. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499

    Article  Google Scholar 

  16. Yu Y, Chen CH, Shi Y (2007) A Tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries. Adv Mater 19(7):993–997

    Article  Google Scholar 

  17. Li Y, Tan B, Wu Y (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8(1):265–270

    Article  Google Scholar 

  18. Liu J, Song K, van Aken PA, Maier J, Yu Y (2014) Self-supported Li4Ti5O12–C nanotube arrays as high-rate and long-life anode materials for flexible li-ion batteries. Nano Lett 14(5):2597–2603

    Article  Google Scholar 

  19. Zhang C, Song H, Liu C, Liu Y, Zhang C, Nan X, Cao G (2015) Fast and reversible li ion insertion in carbon-encapsulated Li3VO4 as anode for lithium-ion battery. Adv Funct Mater 25(23):3497–3504

    Article  Google Scholar 

  20. Hou X, Zhang W, Wang X, Hu S, Li C (2015) Soft template PEG-assisted synthesis of Fe3O4@C nanocomposite as superior anode materials for lithium-ion batteries. Sci Bull 60(9):884–891

    Article  Google Scholar 

  21. Muraliganth T, Murugan AV, Manthiram A (2009) Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries. Chem Commun 47:7360–7362

    Article  Google Scholar 

  22. He C, Wu S, Zhao N, Shi C, Liu E, Li J (2013) Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7(5):4459–4469

    Article  Google Scholar 

  23. Zhang Z, Wang F, An Q, Li W, Wu P (2015) Synthesis of graphene@ Fe3O4@C core–shell nanosheets for high-performance lithium ion batteries. J Mater Chem 3(13):7036–7043

    Article  Google Scholar 

  24. Wang Z-J, Weinberg G, Zhang Q, Lunkenbein T, Klein-Hoffmann A, Kurnatowska M, Plodinec M, Li Q, Chi L, Schlögl R (2015) Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9(2):1506–1519

    Article  Google Scholar 

  25. Zhao W, Fang M, Wu F, Wu H, Wang L, Chen G (2010) Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem 20(28):5817–5819

    Article  Google Scholar 

  26. Reddy M, Yu T, Sow C-H, Shen ZX, Lim CT, Subba Rao G, Chowdari B (2007) α-Fe2O3 nanoflakes as an anode material for Li-Ion batteries. Adv Funct Mater 17(15):2792–2799

    Article  Google Scholar 

  27. Hontoria-Lucas C, Lopez-Peinado A, López-González JdD, Rojas-Cervantes M, Martin-Aranda R (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33(11):1585–1592

    Article  Google Scholar 

  28. Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22(22):2392–2415

    Article  Google Scholar 

  29. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  Google Scholar 

  30. Stankovich S, Piner RD, Nguyen ST, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44(15):3342–3347

    Article  Google Scholar 

  31. Lin T, Chen J, Bi H, Wan D, Huang F, Xie X, Jiang M (2013) Facile and economical exfoliation of graphite for mass production of high-quality graphene sheets. J Mater Chem 1(3):500–504

    Article  Google Scholar 

  32. Wang G, Shen X, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47(8):2049–2053

    Article  Google Scholar 

  33. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22):8192–8195

    Article  Google Scholar 

  34. Wang G, Shen X, Wang B, Yao J, Park J (2009) Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47(5):1359–1364

    Article  Google Scholar 

  35. Bong S, Kim Y-R, Kim I, Woo S, Uhm S, Lee J, Kim H (2010) Graphene supported electrocatalysts for methanol oxidation. Electrochem Commun 12(1):129–131

    Article  Google Scholar 

  36. Liu H, Wang G, Wang J, Wexler D (2008) Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries. Electrochem Commun 10(12):1879–1882

    Article  Google Scholar 

  37. Liang H, Feng Q, Xia X, Li R, Guo H, Xu K, Tao P, Chen Y, Du G (2014) Room temperature electroluminescence from arsenic doped p-type ZnO nanowires/n-ZnO thin film homojunction light-emitting diode. J Mater Sci: Mater Electron 25(4):1955–1958

    Google Scholar 

  38. Li B, Cao H, Shao J, Qu M, Warner JH (2011) Superparamagnetic Fe3O4 nanocrystals@ graphene composites for energy storage devices. J Mater Chem 21(13):5069–5075

    Article  Google Scholar 

  39. Yoon T, Kim J, Kim J, Lee JK (2013) Electrostatic self-assembly of Fe3O4 nanoparticles on graphene oxides for high capacity lithium-ion battery anodes. Energies 6(9):4830–4840

    Article  Google Scholar 

  40. Zhou G, Wang D-W, Li F, Zhang L, Li N, Wu Z-S, Wen L, Lu GQ, Cheng H-M (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22(18):5306–5313

    Article  Google Scholar 

  41. Chen D, Ji G, Ma Y, Lee JY, Lu J (2011) Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries. ACS Appl Mater Interfaces 3(8):3078–3083

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China with Grant Nos. 51173087 and 21305133, and Taishan Scholars Program for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinxue Guo or Jingquan Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Cao, Y., Zhang, J. et al. One-step preparation of graphene nanosheets via ball milling of graphite and the application in lithium-ion batteries. J Mater Sci 51, 3675–3683 (2016). https://doi.org/10.1007/s10853-015-9655-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9655-z

Keywords

Navigation