Skip to main content
Log in

Chemical oxidation of silicon oxycarbide ceramics for advanced drug delivery systems

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silicon oxycarbide particles were subjected to chemical oxidation processes to incorporate carbonyl and carboxylic functionalities on their surfaces. These materials were subjected to in vitro tests to determine their adsorption and release capabilities of the antiretroviral drug molecule acyclovir. The spectroscopic characterization revealed the distribution of the functionalities in the different nanophases contained within the silicon oxycarbide structure. This selective distribution in either the carbon or the silicon oxycarbide phase leads to a differential charge availability that in fact is responsible for the adsorption of the drug molecule on the surface of the particles. This adsorption occurs via donor–acceptor interactions with no chemical bonds involved in the drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cuerda-Correa EM, Dominguez-Vargas JR, Olivares-Marin FJ, Beltran de Heredia J (2010) On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water. J Hazard Mater 177:1046–1053

    Article  Google Scholar 

  2. Shen G, Yu W, Liu M, Cui X (2013) Preparation and application of immobilized enzyme micro-reactor. Prog Chem 25:1198–1207

    Google Scholar 

  3. Sawdon AJ, Peng C-A (2014) Polymeric micelles for acyclovir drug delivery. Colloids Surf, B 122:738–745

    Article  Google Scholar 

  4. Arcos D, Vallet-Regí M (2013) Bioceramics for drug delivery. Acta Mater 61:890–911

    Article  Google Scholar 

  5. Horcajada P, Márquez-Alvarez C, Rámila A, Pérez-Pariente J, Vallet-Regí M (2006) Controlled release of ibuprofen from dealuminated faujasites. Solid State Sci 8:1459–1465

    Article  Google Scholar 

  6. Colilla M, Manzano M, Izquierdo-Barba I, Vallet-Regí M, Boissiére C, Sanchez C (2009) Advanced drug delivery vectors with tailored surface properties made of mesoporous binary oxides submicronic spheres. Chem Mater 22:1821–1830

    Article  Google Scholar 

  7. Shi QH, Wang JF, Zhang JP, Fan J, Stucky GD (2006) Rapid-setting, mesoporous, bioactive glass cements that induce accelerated in vitro apatite formation. Adv Mater 18:1038–1042

    Article  Google Scholar 

  8. Barbé C, Bartlett J, Kong L et al (2004) Silica particles: a novel drug-delivery system. Adv Mater 16:1959–1966

    Article  Google Scholar 

  9. Hagiwara A, Takahashi T (1987) A new drug-delivery-system of anticancer agents: activated carbon particles adsorbing anticancer agents. In Vivo 1:241–252

    Google Scholar 

  10. Saha D, Payzant EA, Kumbhar AS, Naskar AK (2013) Sustainable mesoporous carbons as storage and controlled-delivery media for functional molecules. ACS Appl Mater Interfaces 5:5868–5874

    Article  Google Scholar 

  11. Ilbasmis-Tamer S, Yilmaz S, Banoglu E, Degim IT (2012) Carbon nanotubes to deliver drug molecules. J Biomed Nanotechnol 6:20–27

    Article  Google Scholar 

  12. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H (2011) Carbon materials for drug delivery and cancer therapy. Mater Today 14:316–323

    Article  Google Scholar 

  13. Kortesuo P, Ahola M, Karlsson S, Kangasniemi I, Kiesvaara J, Yli-Urpo A (1999) Sol–gel-processed sintered silica xerogel as a carrier in controlled drug delivery. J Biomed Mater Res 44:162–167

    Article  Google Scholar 

  14. Unger K, Rupprecht H, Valentin B, Kircher W (1983) The use of porous and surface modified silicas as drug delivery and stabilizing agents. Drug Dev Ind Pharm 9:69–91

    Article  Google Scholar 

  15. Sieminska L, Ferguson M, Zerda TW, Couch E (1997) Diffusion of steroids in porous sol–gel glass: application in slow drug delivery. J Sol-Gel Sci Technol 8:1105–1109

    Google Scholar 

  16. Yunos NHM, Hamdan H, Ling LS (2010) Piperine loaded silica aerogel and silica xerogel as NANO-Enabled drug delivery system. World Appl Sci J 9:6–16

    Google Scholar 

  17. Muñoz B, Rámila A, Pérez-Pariente J, Díaz I, Vallet-Regí M (2003) MCM-41 organic modification as drug delivery rate regulator. Chem Mater 15:500–503

    Article  Google Scholar 

  18. Wang H, Gao X, Wang Y, Wang J, Niu X, Deng X (2012) Effect of amine functionalization of SBA-15 on controlled baicalin drug release. Ceram Int 38:6931–6935

    Article  Google Scholar 

  19. Manzano M, Aina V, Areán CO et al (2008) Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem Eng J 137:30–37

    Article  Google Scholar 

  20. Maniya NH, Patel SR, Murthy ZVP (2015) Controlled delivery of acyclovir from porous silicon micro- and nanoparticles. Appl Surf Sci 330:358–365

    Article  Google Scholar 

  21. Kurtz-Chalot A, Klein JP, Pourchez J et al (2014) Adsorption at cell surface and cellular uptake of silica nanoparticles with different surface chemical functionalizations: impact on cytotoxicity. J Nanoparticle Res 16:1–15

    Article  Google Scholar 

  22. Zhuo R, Colombo P, Pantano C, Vogler EA (2005) Silicon oxycarbide glasses for blood-contact applications. Acta Biomater 1:583–589

    Article  Google Scholar 

  23. Aravind PR, Soraru GD (2011) High surface area methyltriethoxysilane-derived aerogels by ambient pressure drying. J Porous Mater 18:159–165

    Article  Google Scholar 

  24. Sorarù GD (1994) Silicon oxycarbide glasses from gels. J Sol-Gel Sci Technol 2:843–848

    Article  Google Scholar 

  25. Babonneau F, Soraru GD, Dandrea G, Dire S, Bois L (1992) Silicon oxycarbide glasses from sol–gel precursors

  26. Singh AK, Pantano CG (1996) Porous silicon oxycarbide glasses. J Am Ceram Soc 79:2696–2704

    Article  Google Scholar 

  27. Morcos RM, Navrotsky A, Varga T et al (2008) Energetics of SixOyCz polymer-derived ceramics prepared under varying conditions. J Am Ceram Soc 91:2969–2974

    Article  Google Scholar 

  28. Kroll P (2010) Searching insight into the atomistic structure of SiCO ceramics. J Mater Chem 20:10528–10534

    Article  Google Scholar 

  29. Tamayo A, Peña-Alonso R, Rubio J, Raj R, Sorarù GD, Oteo JL (2011) Surface energy of sol gel-derived silicon oxycarbide glasses. J Am Ceram Soc 94:4523–4533

    Article  Google Scholar 

  30. Tamayo A, Rubio F, Rubio J, Luis Oteo J (2013) Surface and structural modification of nanostructured mesoporous silicon oxycarbide glasses obtained from preceramic hybrids aged in NH4OH. J Am Ceram Soc 96:323–330

    Article  Google Scholar 

  31. Tamayo A, Mazo MA, Ruiz-Caro R et al (2015) Mesoporous silicon oxycarbide materials for controlled drug delivery systems. Chem Eng J 280:165–174

    Article  Google Scholar 

  32. Popova MD, Szegedi Á, Kolev IN et al (2012) Carboxylic modified spherical mesoporous silicas as drug delivery carriers. Int J Pharm 436:778–785

    Article  Google Scholar 

  33. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London

    Google Scholar 

  34. Babonneau F, Maquet J, Bonhomme C, Richter R, Roewer G, Bahloul D (1996) 29Si and 13C NMR investigation of the polysilane-to-poly(carbosilane) conversion of poly(methylchlorosilanes) using cross-polarization and inversion recovery cross-polarization techniques. Chem Mater 8:1415–1428

    Article  Google Scholar 

  35. Corriu RJP, Leclercq D, Mutin PH, Vioux A (1995) SI-29 nuclear-magnetic-resonance study of the structure of silicon oxycarbide glasses derived from organosilicon precursors. J Mater Sci 30:2313–2318. doi:10.1007/BF01184579

    Article  Google Scholar 

  36. Widgeon SJ, Sen S, Mera G, Ionescu E, Riedel R, Navrotsky A (2010) 29Si and 13C solid-state nmr spectroscopic study of nanometer-scale structure and mass fractal characteristics of amorphous polymer derived silicon oxycarbide ceramics. Chem Mater 22:6221–6228

    Article  Google Scholar 

  37. Lee DW, De Los Santos V L, Seo JW et al (2010) The structure of graphite oxide: investigation of its surface chemical groups. J Phys Chem B 114:5723–5728

    Article  Google Scholar 

  38. Arean CO, Vesga MJ, Parra JB, Delgado MR (2013) Effect of amine and carboxyl functionalization of sub-micrometric MCM-41 spheres on controlled release of cisplatin. Ceram Int 39:7407–7414

    Article  Google Scholar 

  39. Balon K, Riebesehl BU, Müller BW (1999) Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption. Pharm Res 16:882–888

    Article  Google Scholar 

  40. Birnbaum GI, Cygler M, Shugar D (1984) Conformational features of acyclonucleosides: structure of acyclovir, an antiherpes agent. Can J Chem 62:2646–2652

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out with the financial support of the Spanish Ministry of Economics and Competitiveness, research project MAT2012-34552. A. Tamayo is indebted to CSIC for her JAE-DOC Grant supported by the program “Junta para la Ampliación de Estudios” and co-financed by the FSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aitana Tamayo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamayo, A., Ruiz-Caro, R., Mazo, A. et al. Chemical oxidation of silicon oxycarbide ceramics for advanced drug delivery systems. J Mater Sci 51, 1382–1391 (2016). https://doi.org/10.1007/s10853-015-9457-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9457-3

Keywords

Navigation