Skip to main content
Log in

Effect of modification of cyclic butylene terephthalate on crystallinity and properties after ring-opening polymerisation

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ring-opening polymerisation of the macro-cyclic oligomer of butylene terephthalate at elevated temperatures was found to produce high molecular weight polybutylene terephthalate that was both highly crystalline and brittle. The impact of reactive and non-reactive additives on the polymerisation, crystallisation and final crystal structure was extensively studied using differential scanning calorimetry and rheological methods and correlated with observed improvements in fracture toughness and tensile properties for both the neat resin and mode I and II fracture toughness of the fibre-reinforced composites. The reactive modifiers used were bi-functional epoxy resins, namely diglycidyl ether of bis phenol A, butanediol diglycidyl ether and bis[(glycidyl ether)phenyl)]-m-xylene, while the non-reactive modifiers were selected β nucleants and the ductile thermoplastic, polyethylene glycidyl methacrylate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. van Rijswijk K, Bersee HEN (2007) Reactive processing of textile fiber-reinforced thermoplastic composites—an overview. Compos A 38:666. doi:10.1016/j.compostiesa.2006.05.007

    Article  Google Scholar 

  2. Brunelle DJ (2008) Cyclic oligomer chemistry. J Polym Sci Part A 46:1151. doi:10.1002/pola.22526

    Article  Google Scholar 

  3. Ben-Haida A, Conzatti L, Hodge P, Manzini B, Stagnaro P (2010) An Introduction to Entropically Driven Ring Opening Polymerisations. Macromol. Symp. 6–17:297. doi:10.1002/masy.200900109.

  4. Jiang HY, Chen TL, Xu JP (1997) Synthesis, structure, and ring-opening polymerization of macrocyclic aromatic esters: a new route to high-performance polyarylates. Macromolecules 30:2839. doi:10.1021/ma9613244

    Article  Google Scholar 

  5. van Rijswijk K, Bersee HEN, Jager WF, Picken SJ (2006) Optimisation of anionic polyamide-6 for vacuum infusion of thermoplastic composites: choice of activator and initiator. Compos A 37:949. doi:10.1016/j.compositesa.2005.01.023

    Article  Google Scholar 

  6. Manolakis I, Cross P, Ward S, Colquhoun HM (2012) Ring-opening polymerization in molten PEEK: transient reduction of melt-viscosity by macrocyclic aromatic thioetherketones. J Mater Chem 22:20458. doi:10.1039/c2jm32496b

    Article  Google Scholar 

  7. Wang YF, Chan KP, Hay AS (1996) Novel aromatic macrocyclic oligomers: intermediates for the preparation of high-performance polymers React. Funct. Polym. 30:205. doi:10.1016/1381-5148(95)00122-0

    Article  Google Scholar 

  8. Ishak ZAM, Gatos KG, Karger-Kocsis J (2006) On the in situ polymerization of cyclic butylene terephthalate oligomers: DSC and rheological studies Polym. Eng Sci 46:743. doi:10.1002/pen.20486

    Google Scholar 

  9. Parton H, Baets J, Lipnik P, Goderis B, Devaux J, Verpoest I (2005) Properties of poly(butylene terephthatlate) polymerized from cyclic oligomers and its composites. Polymer 46:9871. doi:10.1016/j.polymer.2005.07.082

    Article  Google Scholar 

  10. Hakme C, Stevenson I, Maazouz A, Cassagnau P, Boiteux G, Seytre G (2007) In situ monitoring of cyclic butylene terephtalate polymerization by dielectric sensing. J Non-Cryst Solids 353:4362. doi:10.1016/j.jnoncrysol.2007.04.051

    Article  Google Scholar 

  11. CM Wu, JW Jiang, CH Chiu, JC Chen (2009) 17th International Conference on Composite Materials Edinburgh, UK

  12. Wu C-M, Jiang C-W (2010) Crystallization and morphology of polymerized cyclic butylene terephthalate. J Polym Sci Part B 48:1127. doi:10.1002/polb.21998

    Article  Google Scholar 

  13. Zhang J, Wang Z, Wang B et al (2013) Living lamellar crystal initiating polymerization and brittleness mechanism investigations based on crystallization during the ring-opening of cyclic butylene terephthalate oligomers. Polym Chem 4:1648. doi:10.1039/c2py20847d

    Article  Google Scholar 

  14. Chen H, Huang C, Yu W, Zhou C (2013) Effect of thermally reduced graphite oxide (TrGO) on the polymerization kinetics of poly(butylene terephthalate) (pCBT)/TrGO nanocomposites prepared by in situ ring-opening polymerization of cyclic butylene terephthalate. Polymer 54:1603. doi:10.1016/j.polymer.2013.01.036

    Article  Google Scholar 

  15. Balogh G, Hajba S, Karger-Kocsis J, Czigany T (2013) Preparation and characterization of in situ polymerized cyclic butylene terephthalate/graphene nanocomposites. J Mater Sci 48:2530. doi:10.1007/s10853-012-7042-6

    Article  Google Scholar 

  16. Karger-Kocsis J, Shang PP, Ishak ZAM, Rosch M (2007) Melting and crystallization of in situ polymerized cyclic butylene terephthalates with and without organoclay: a modulated DSC study. Express Polym Lett 1:60. doi:10.3144/expresspolymlett.2007.12

    Article  Google Scholar 

  17. Lanciano G, Greco A, Maffezzoli A, Mascia L (2009) Effects of thermal history in the ring opening polymerization of CBT and its mixtures with montmorillonite on the crystallization of the resulting poly(butylene terephthalate). Thermochim Acta 493:61. doi:10.1016/j.tca.2009.04.004

    Article  Google Scholar 

  18. Baets J, Godara A, Devaux J, Verpoest I (2008) Toughening of polymerized cyclic butylene terephthalate with carbon nanotubes for use in composites. Compos A 39:1756. doi:10.1016/j.compositesa.2008.08.004

    Article  Google Scholar 

  19. Baets J, Godara A, Devaux J, Verpoest I (2010) Toughening of isothermally polymerized cyclic butylene terephthalate for use in composites. Polym Degrad Stab 95:346. doi:10.1016/j.polymdegradstab.2009.11.005

    Article  Google Scholar 

  20. Wu C-M, Huang C-W (2011) Melting and crystallization behavior of copolymer from cyclic butylene terephthalate and polycaprolactone. Polym Eng Sci 51:1004. doi:10.1002/pen.21910

    Article  Google Scholar 

  21. Tripathy AR, MacKnight WJ, Kukureka SN (2004) In-situ copolymerization of cyclic poly(butylene terephthalate) oligomers and ε-caprolactone. Macromolecules 37:6793. doi:10.1021/ma0400517

    Article  Google Scholar 

  22. Abt T, Sanchez-Soto M, Illescas S, Aurrekoetxea J, Sarrionandia M (2011) Toughening of in situ polymerized cyclic butylene terephthalate by addition of tetrahydrofuran. Polym Int 60:549. doi:10.1002/pi.2977

    Article  Google Scholar 

  23. Tripathy AR, Chen WJ, Kukureka SN, MacKnight WJ (2003) Novel poly(butylene terephthalate)/poly(vinyl butyral) blends prepared by in situ polymerization of cyclic poly(butylene terephthalate) oligomers. Polymer 44:1835. doi:10.1016/s0032-3861(03)00029-6

    Article  Google Scholar 

  24. Abt T, Sanchez-Soto M, de Ilarduya AM (2012) Toughening of in situ polymerized cyclic butylene terephthalate by chain extension with a bifunctional epoxy resin. Eur Polym J 48:163. doi:10.1016/j.eurpolymj.2011.10.017

    Article  Google Scholar 

  25. Abt T, Martinez A, de Ilarduya JJ, Sanchez-Soto Bou M (2013) Isocyanate toughened pCBT: reactive blending and tensile properties. Express Polym Lett 7:172. doi:10.3144/expresspolymlett.2013.16

    Article  Google Scholar 

  26. Podkoscielny W, Bartnicki A (2000) New acrylic esters, derivatives of some diglycidyl ethers as main components of lacquer compositions. Mol Cryst Liq Cryst Sci Technol 354:35

    Article  Google Scholar 

  27. Kodomari M, Taguchi S (1996) Friedel-crafts arylmethylation of aromatics with bis (chloromethyl)benzenes catalysed by zinc chloride supported on silica gel. J Chem Res 5:240

    Google Scholar 

  28. Varley RJ, Dell’Olio M, Yuan Q, Khor S, Leong KH, Bateman S (2013) Different beta nucleants and the resultant microstructural, fracture, and tensile properties for filled and unfilled Iso Polypropylene. J Appl Polym Sci 128:619. doi:10.1002/app.38152

    Article  Google Scholar 

  29. Bikiaris DN, Karayannidis GP (1996) Chain extension of polyesters PET and PBT with two new diimidodiepoxides. II. J Polym Sci Part A 34:1337. doi:10.1002/(sici)1099-0518(199605)34:7<1337:aid-pola22>3.0.co;2-9

    Article  Google Scholar 

  30. Xanthos M, Young MW, Karayannidis GP, Bikiaris DN (2001) Reactive modification of polyethylene terephthalate with polyepoxides Polym. Eng Sci 41:643. doi:10.1002/pen.10760

    Google Scholar 

  31. Ishak ZAM, Shang PP, Karger-Kocsis J (2006) A modulated dsc study on the in situ polymerization of cyclic butylene terephthalate oligomers. J Therm Anal Calorim 84:637. doi:10.1007/s10973-005-7059-z

    Article  Google Scholar 

  32. Tripathy AR, Elmoumni A, Winter HH, MacKnight WJ (2005) Effects of catalyst and polymerization temperature on the in situ polymerization of cyclic poly(butylene terephthalate) oligomers for composite applications. Macromolecules 38:709. doi:10.1021/ma0483874

    Article  Google Scholar 

  33. Bascom WD, Cottington RL (1976) Effect of temperature on adhesive fracture behaviour of an elastomer epoxy resin. J Adhes 7:333. doi:10.1080/00218467608075063

    Article  Google Scholar 

  34. Yu T, Wu CM, Chang CY, Wang CY, Rwei SP (2012) Effects of crystalline morphologies on the mechanical properties of carbon fiber reinforcing polymerized cyclic butylene terephthalate composites. Express Polym Lett 6:318. doi:10.3144/expresspolymlett.2012.35

    Article  Google Scholar 

  35. Baets J, Devaux J, Verpoest I (2010) Toughening of basalt fiber-reinforced composites with a cyclic butylene terephthalate matrix by a nonisothermal production method. Adv Polym Technol 29:70. doi:10.1002/adv.20176

    Article  Google Scholar 

  36. Agirregomezkorta A, Martinez AB, Sanchez-Soto M, Aretxaga G, Sarrionandia M, Aurrekoetxea J (2012) Impact behaviour of carbon fibre reinforced epoxy and non-isothermal cyclic butylene terephthalate composites manufactured by vacuum infusion. Compos B 43:2249. doi:10.1016/j.compositesb.2012.01.091

    Article  Google Scholar 

  37. Ishak ZAM, Leong YW, Steeg M, Karger-Kocsis J (2007) Mechanical properties of woven glass fabric reinforced in situ polymerized poly(butylene terephthalate) composites. Compos Sci Technol 67:390. doi:10.1016/j.compscitech.2006.09.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell J. Varley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dell’Olio, C., Leonard, S., Dao, B. et al. Effect of modification of cyclic butylene terephthalate on crystallinity and properties after ring-opening polymerisation. J Mater Sci 50, 8073–8088 (2015). https://doi.org/10.1007/s10853-015-9375-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9375-4

Keywords

Navigation