Skip to main content
Log in

Synthesis, characterization, photocatalytic evaluation, and toxicity studies of TiO2–Fe3+ nanocatalyst

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Based on our previous work on the green preparation of Ag–TiO2 photocatalyst with bactericidal activity under visible light, we extended our studies to the synthesis of TiO2–Fe3+ materials with enhanced photocatalytic activity for the degradation of recalcitrant organic pollutants in water. TiO2–Fe3+ nanopowders were synthesized using a robust, environmentally friendly procedure. Established amounts of Fe(NO3)3·9H2O and titanium tetraisopropoxide (TTIP) were mixed using glacial acetic acid as solvent. Hydrolysis of TTIP–Fe3+ was accomplished using a 30 % (W/V) Arabic gum aqueous solution. TiO2–Fe3+ nanopowders were obtained by thermal treatment at 400 °C. In order to elucidate the structure of these photocatalysts, microscopic and spectroscopic characterization techniques were applied. The high resolution transmission electron microscopy (HRTEM) analysis indicated the presence of uniformly distributed particles with average particle size of about 9 nm. According to the HRTEM lattice fringes, ring pattern, and selected area electron diffraction pattern, the crystalline part of the samples consists of anatase (PDF 01-086-1157 with the lattice constant of 3.7852, 9.5139 Å and 90°) as dominant phase. X-ray photoelectron spectroscopy (XPS) was applied to determine the oxidation state of iron. The XPS provides evidence for Fe3+ surface species in the TiO2–Fe3+ composite. Complete degradation of aqueous solutions (20 ppm) of methylene blue and/or methyl orange was accomplished after 4 h of treatment using 150 mg of TiO2–Fe3+/150 mL of dye solution. The in vitro toxicity of the materials was tested. The materials showed no toxicity against human red blood cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Rev 1–2:186–205

    Article  Google Scholar 

  2. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  Google Scholar 

  3. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 107(7):2891–2959

    Article  Google Scholar 

  4. Yamashita H, Harada M, Misaka J, Takeuchi M, Ikeue K, Anpo M (2002) Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J Photochem Photobiol A 148:257–261

    Article  Google Scholar 

  5. Dukes FM, Iuppa E, Meyer B, Mary Jane Shultz MJ (2012) Differing photo-oxidation mechanisms: electron transfer in TiO2 versus iron-doped TiO2. Langmuir 28:16933–16940

    Article  Google Scholar 

  6. Adán C, Bahamonde A, Fernández-García M, Martínez-Arias A (2007) Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation. Appl Catal B Environ 72:11–17

    Article  Google Scholar 

  7. Litter MI, Navio JA (1996) Photocatalytic properties of iron-doped titania semiconductors. J Photochem Photobiol A Chem 98:171–181

    Article  Google Scholar 

  8. Liu M, Qiu X, Miyauchi M, Hashimoto K (2013) Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalyst. J Am Chem Soc 135:10064–10072

    Article  Google Scholar 

  9. Rawal B, Kim HJ, Lee WI (2013) Enhanced visible-light photocatalytic properties of Fe+3-grafted N-doped TiO2 nanoporous spheres. Appl Catal B Environ 142–143:458–464

    Article  Google Scholar 

  10. Esquivel K, Nava R, Zamudio-Mendez A, Vega González M, Jaime-Acuña OE, Escobar-Alarcón L, Peralta-Hernández JM, Pawelec B, Fierro JLG (2013) Microwave-assisted synthesis of (S)Fe/TiO2 systems: effects of synthesis conditions and dopant concentration on photoactivity. Appl Catal B Environ 140–141:213–224

    Article  Google Scholar 

  11. Zhao B, Mele G, Pio I, Palmisano L, Vasapollo G (2010) Degradation of 4-nitrophenol (4-NP) using Fe–TiO2 as a heterogeneous photo-Fenton catalyst. J Hazard Mater 1–3:569–574

    Article  Google Scholar 

  12. Schrand AM, Dai L, Schlager JL, Hussain SM (2012) Toxicity testing of nanomaterials. In: Balls M, Combes RD, Bhogal N (eds) New technologies for toxicity testing. Springer, New York, pp 58–75

    Chapter  Google Scholar 

  13. Pokhrel S, Nel AE, Madler L (2013) Custom-designed nanomaterial libraries for testing metal oxide toxicity. Acc Chem Res 46(3):632–641

    Article  Google Scholar 

  14. Saquib Q, Al-Khedhairy A, Siddiqui MA, Abou-Tarboush F, Azam A, Musarrat J (2012) Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol In Vitro 26(2):351–361

    Article  Google Scholar 

  15. Medina-Ramírez I, Luo Z, Bashir S, Mernaugh R, Liu JL (2011) Facile design and nanostructural evaluation of silver-modified titania used as disinfectant. Dalton Trans 40:1047–1054

    Google Scholar 

  16. Mackenzie JD, Bescher EP (2007) Chemical routes in the synthesis of nanomaterials using the sol–gel process. Acc Chem Res 40(9):810–818

    Article  Google Scholar 

  17. Bloh J, Dillert R, Bahnemann D (2012) Designing optimal metal-doped photocatalysts: correlation between photocatalytic activity, doping ratio, and particle size. J Phys Chem C 116:25558–25562

    Article  Google Scholar 

  18. Zhang Z, Wang C, Zakaria R, Ying J (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102(52):10871–10878

    Article  Google Scholar 

  19. Zhang J, Hu Y, Matsuoka M, Yamashita H, Minagawa M, Hidaka H, Anpo M (2001) Relationship between the local structures of titanium oxide photocatalysts and their reactivities in the decomposition of NO. J Phys Chem B 105(35):8395–8398

    Article  Google Scholar 

  20. Aydin C, El-sadek MS, Zheng K, Yahia IS, Yakuphanoglu F (2013) Synthesis, diffused reflectance and electrical properties of nanocrystalline Fe-doped ZnO via sol–gel calcination technique. Opt Laser Technol 48:447–452

    Article  Google Scholar 

  21. Zhang W, Chen Y, Yu S, Chen S, Yin Y (2008) Preparation and antibacterial behavior of Fe3+-doped nanostructured TiO2 thin films. Thin Solid Films 516(15):4690–4694

    Article  Google Scholar 

  22. Wang B, Li Q, Wang W, Li Y, Zhai J (2011) Preparation and characterization of Fe3+-doped TiO2 on fly ash cenospheres for photocatalytic application. Appl Surf Sci 257(8):3473–3479

    Article  Google Scholar 

  23. Wang JA, Limas-Ballesteros R, López T, Moreno A, Gómez R, Novaro O, Bokhimi X (2001) Quantitative determination of titanium lattice defects and solid-state reaction mechanism in iron-doped TiO2 photocatalysts. J Phys Chem B 105:9692–9698

    Article  Google Scholar 

  24. Wang XH, Li J-G, Kamiyama H, Moriyoshi Y, Ishigaki T (2006) Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over Iron(III)-doped TiO2 nanopowders under UV and visible light irradiation. J Phys Chem B 110:6804–6809

    Article  Google Scholar 

  25. Di Paola A, Marci G, Palmisano L, Schiavello M, Uosaki K, Ikeda S, Othani B (2002) Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol. J Phys Chem B 106:637–645

    Article  Google Scholar 

  26. Shao-You L, Qun-Li T, Qing-Ge F (2011) Synthesis of S/Cr doped mesoporous TiO2 with high-active visible light degradation property via solid state reaction route. Appl Surf Sci 257(13):5544–5551

    Article  Google Scholar 

  27. Mangham AN, Govind N, Bowden ME, Shutthanandan V, Joly AG, Henderson MA, Chambers SA (2011) Photochemical properties, composition and structure in molecular beam epitaxy grown Fe “doped” and (Fe, N) codoped rutile TiO2 (110). J Phys Chem C 115(31):15416–15424

    Article  Google Scholar 

  28. Li H, Liu G, Chen S, Liu Q (2010) Novel Fe doped mesoporous TiO2 microspheres: ultrasonic–hydrothermal synthesis, characterization, and photocatalytic properties. Phys E 42(6):1844–1849

    Article  Google Scholar 

  29. Poulin S, Franca R, Moreau-Bélanger L, Sacher E (2010) Confirmation of X-ray photoelectron spectroscopy peak attributions of nanoparticulate iron oxides, using symmetric peak component line shapes. J Phys Chem C 114(24):10711–10718

    Article  Google Scholar 

  30. Houas A, Lachheb H, Guillard Ch, Herrmann J-M (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ 31:145–157

    Article  Google Scholar 

  31. Guivarch E, Trevin S, Lahitte C, Oturan MA (2003) Degradation of azo dyes inwater by electro-Fenton process. Environ Chem Lett 1:38–44

    Article  Google Scholar 

  32. Dai K, Chen H, Peng T, Ke D, Yi H (2007) Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere 69(9):1361–1367

    Article  Google Scholar 

  33. Raileanu M, Crisan M, Nitoi I, Ianculescu A, Oancea P, Crisan D, Todan L (2013) TiO2-based nanomaterials with photocatalytic properties for the advanced degradation of xenobiotic compounds from water. A literature survey. Water Air Soil Pollut 224:1548

    Article  Google Scholar 

  34. Teh C, Mohamed A (2011) Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: a review. J Alloys Compd 509(5):1648–1660

    Article  Google Scholar 

  35. Cong Y, Zhang J, Chen F, Anpo M, He D (2007) Preparation, photocatalytic activity, and mechanism of nano-TiO2 Co-doped with nitrogen and iron (III). J Phys Chem C 111:10618–10623

    Article  Google Scholar 

  36. Sadik WA (2007) Effect of inorganic oxidants in photodecolourization of an azo dye. J Photochem Photobiol A Chem 191(2–3):132–137

    Article  Google Scholar 

  37. Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698

    Article  Google Scholar 

  38. Elghniji K, Atyaoui A, Livraghi S, Bousselmi L, Giamello E, Ksibi M (2012) Synthesis and characterization of Fe3+ doped TiO2 nanoparticles and films and their performance for photocurrent response under UV illumination. J Alloys Compd 541:421–427

    Article  Google Scholar 

  39. Veréb G, Ambrus Z, Pap Zs, Kmetykó A, Dombi A, Danciu V, Cheesman A, Mogyrósi K (2012) Comparative study on UV and visible light sensitive bare and doped titanium dioxide photocatalysts for the decomposition of environmental pollutants in water. Appl Catal A Gen 417–418:26–36

    Article  Google Scholar 

  40. Zhang R, Bai Y, Zhang B, Chen L, Yan B (2012) The potential health risk of titania nanoparticles. J Hazard Mater 211–212:404–413

    Google Scholar 

  41. Gajewicz A, Rasulev B, Dinadayalane T, Urbaszek P, Puzyn T, Leszczynska D, Leszczynski J (2012) Advancing risk assessment of engineered nanomaterials: application of computational approaches. Adv Drug Deliv Rev 64(15):1663–1693

    Article  Google Scholar 

  42. Kiser M, Westerhoff P, Benn T, Wang Y, Perez-Rivera J, Hristovski K (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43(17):6757–6763

    Article  Google Scholar 

  43. Auffan M, Rose J, Wiesner M, Bottero J (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133

    Article  Google Scholar 

  44. Wu H, Zhang S, Zhang J, Liu G, Shi J, Zhang L, Cui X, Ruan M, He Q, Bu W (2011) A hollow-core, magnetic, and mesoporous double-shell nanostructure. In situ decomposition/reduction synthesis, bioimaging, and drug-delivery properties. Adv Funct Mater 21(10):1850–1862

    Article  Google Scholar 

  45. Behera T, Swain P, Rangacharulu P, Samanta M (2013) Nano-Fe as feed additive improves the hematological and immunological parameters of fish, Labeo rohita H. Appl Nanosci. doi:10.1007/s13204-013-0251-8

    Google Scholar 

  46. Nemmar A, Melghit K, Al-salam S, Zia S, Dhanasekaran S, Attoub S, Al-Amri I, Ali B (2011) Acute respiratory and systemic toxicity of pulmonary exposure to rutile Fe-doped TiO2 nanorods. Toxicology 279(1–3):167–175

    Article  Google Scholar 

  47. Miralles P, Church T, Harris A (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46(17):9224–9239

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support for this research that has been provided by FOMIX-AGS-2011-02-1777013 and CONACYT-2012-193883. We also would like to thank the anonymous reviewers for their invaluable comments, which help to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iliana Medina-Ramírez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1868 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina-Ramírez, I., Liu, J.L., Hernández-Ramírez, A. et al. Synthesis, characterization, photocatalytic evaluation, and toxicity studies of TiO2–Fe3+ nanocatalyst. J Mater Sci 49, 5309–5323 (2014). https://doi.org/10.1007/s10853-014-8234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8234-z

Keywords

Navigation