Skip to main content
Log in

Surface properties of bioactive TEOS–PDMS–TiO2–CaO ormosils

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tetraethyl orthosilicate (TEOS)–polydimethyl siloxane (PDMS) ormosils with different amounts of Ti and Ca were prepared and characterized. Several surface properties such as specific surface area, porosity, fractality, dispersive and polar surface energies were determined and related with their in-vitro bioactivity. It has been found a dependence of the surface fractal dimension with the concentration of Ca2+ ions that induce the appearance of rough surfaces. The dispersive surface energy, γ dS , increased with the incorporation of Ti or Ca and the presence of micropores, but Ca(NO3)2 precipitates in the surface coming from non-incorporated Ca lead to a decrease of the surface energy values. In relation with the polar surface energy, it has been observed that all ormosil materials presented amphoteric character with a larger presence of base surface sites than acid ones. The basicity of the surface increased with the concentration of Ti and Ca, while the acidity decreased. The in-vitro bioactivity of the surface was estimated by soaking samples in simulated body fluid (SBF) and afterwards characterized by means of X-ray diffraction (TF-XRD) and field emission scanning electron microscopy (FE-SEM). It has been observed that in vitro bioactivity is related with the polar surface characteristics of these materials, being necessary for the bioactivity, the presence of a highly polar surface with intermediate base/acid ratio and specific roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5:117

    Article  Google Scholar 

  2. Kokubo T (1991) Bioactive glass ceramics: properties and applications. Biomaterials 12:155

    Article  Google Scholar 

  3. Zhang D, Hupa M, Hupa L (2008) In situ pH within particle beds of bioactive glasses. Acta Biomater 4:1498

    Article  Google Scholar 

  4. Yamamuro T (1993) In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific Publishing, Singapore

    Google Scholar 

  5. Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70:1764

    Article  Google Scholar 

  6. Tsuru K, Ohtsuki C, Osaka A, Iwamoto T, Mackenzie JD (1997) Bioactivity of sol–gel derived organically modified silicates: part I: in vitro examination. J Mater Sci Mater Med 8:157

    Article  Google Scholar 

  7. Wheeler DL, Montfort MJ, McLoughlin SW (2001) Differential healing response of bone adjacent to porous implants coated with hydroxyapatite and 45S5 bioactive glass. J Biomed Mater Res 55:603

    Article  Google Scholar 

  8. Sepulveda P, Jones JR, Hench LL (2001) Characterization of melt-derived 45S5 and sol–gel-derived 58S bioactive glasses. J Biomed Mater Res 58:734

    Article  Google Scholar 

  9. Hench LL (1998) Bioceramics. J Am Ceram Soc 81:1705

    Article  Google Scholar 

  10. Chen Q, Miyata N, Kokubo T, Nakamura T (2000) Bioactivity and mechanical properties of PDMS-modified CaO–SiO2–TiO2 hybrids prepared by sol–gel process. J Biomed Mater Res 51:605

    Article  Google Scholar 

  11. Aburatani Y, Tsuru K, Hayakawa S, Osaka A (2002) Mechanical properties and microstructure of bioactive ORMOSILs containing silica particles. Mater Sci Eng C 20:195

    Article  Google Scholar 

  12. Almeida JC, Castro AGB, Lancastre JJH et al (2014) Structural characterization of PDMS–TEOS–CaO–TiO2 hybrid materials obtained by sol–gel. Mater Chem Phys 143:557

    Article  Google Scholar 

  13. Tsuru K, Shirosaki Y, Hayakawa S, Osaka A (2013) Sol–gel-derived silicate nano-hybrids for biomedical applications. Biol Pharm Bull 36:1683

    Article  Google Scholar 

  14. Chen Q, Kamitakahara M, Miyata N, Kokubo T, Nakamura T (2000) Preparation of bioactive PDMS-modified CaO–SiO2–TiO2 hybrids by the sol–gel method. J Sol–Gel Sci Technol 19:101

    Article  Google Scholar 

  15. Kamitakahara M, Kawashita M, Miyata N, Kokubo T, Nakamura T (2001) Bioactivity and mechanical properties of polydimethylsiloxane (PDMS)–CaO–SiO2 hybrids with different PDMS contents. J Sol–Gel Sci Technol 21:75

    Article  Google Scholar 

  16. Ohtsuki C, Kokubo T, Yamamuro T (1992) Mechanism of apatite formation on CaO–SiO2–P2O5 glasses in a simulated body fluid. J Non-Cryst Solids 143:84

    Article  Google Scholar 

  17. Kim H-M, Miyaji F, Kokubo T, Ohtsuki C, Nakamura T (1995) Bioactivity of Na2O–CaO–SiO2 Glasses. J Am Ceram Soc 78:2405

    Article  Google Scholar 

  18. Li P, Ohtsuki C, Kokubo T et al (1992) Apatite formation induced by silica gel in a simulated body fluid. J Am Ceram Soc 75:2094

    Article  Google Scholar 

  19. Li P, Kangasniemi I, de Groot K, Kokubo T (1994) Bonelike hydroxyapatite induction by a gel-derived titania on a titanium substrate. J Am Ceram Soc 77:1307

    Article  Google Scholar 

  20. Jokinen M, Pätsi M, Rahiala H, Peltola T, Ritala M, Rosenholm JB (1998) Influence of sol and surface properties on in vitro bioactivity of sol–gel-derived TiO2 and TiO2–SiO2 films deposited by dip-coating method. J Biomed Mater Res 42:295

    Article  Google Scholar 

  21. Peltola T, Jokinen M, Rahiala H et al (1999) Calcium phosphate formation on porous sol–gel-derived SiO2 and CaO–P2O5–SiO2 substrates in vitro. J Biomed Mater Res 44:12

    Article  Google Scholar 

  22. Peltola T, Jokinen M, Rahiala H et al (2000) Effect of aging time of sol on structure and in vitro calcium phosphate formation of sol–gel-derived titania films. J Biomed Mater Res 51:200

    Article  Google Scholar 

  23. Viitala R, Jokinen M, Peltola T, Gunnelius K, Rosenholm JB (2002) Surface properties of in vitro bioactive and non-bioactive sol–gel derived materials. Biomaterials 23:3073

    Article  Google Scholar 

  24. Cho S-B, Nakanishi K, Kokubo T et al (1995) Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J Am Ceram Soc 78:1769

    Article  Google Scholar 

  25. Pereira MM, Clark AE, Hench LL (1995) Effect of texture on the rate of hydroxyapatite formation on gel–silica surface. J Am Ceram Soc 78:2463

    Article  Google Scholar 

  26. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London

    Google Scholar 

  27. Avnir D, Farin D, Pfeifer P (1985) Surface geometric irregularity of particulate materials: the fractal approach. J Colloid Interface Sci 103:112

    Article  Google Scholar 

  28. Rubio F, Rubio J, Oteo JL (1997) Effect of heating on the surface fractal dimensions of ZrO2. J Mater Sci Lett 16:49

    Article  Google Scholar 

  29. Neimark AV, Unger KK (1993) Method of discrimination of surface fractality. J Colloid Interface Sci 158:412

    Article  Google Scholar 

  30. Martos C, Rubio F, Rubio J, Oteo JL (2001) Surface energy of silica–TEOS–PDMS ormosils. J Sol–Gel Sci Technol 20:197

    Article  Google Scholar 

  31. Pena-Alonso R, Tamayo A, Rubio F, Rubio J (2005) Influence of boron concentration on the surface properties of TEOS–PDMS hybrid materials. J Sol–Gel Sci Technol 36:113

    Article  Google Scholar 

  32. Pena-Alonso R, Tellez L, Rubio J, Rubio F (2006) Surface chemical and physical properties of TEOS-TBOT-PDMS hybrid materials. J Sol–Gel Sci Technol 38:133

    Article  Google Scholar 

  33. Tamayo A, Tellez L, Pena-Alonso R, Rubio F, Rubio J (2009) Surface changes during pyrolytic conversion of hybrid materials to oxycarbide glasses. J Mater Sci 44:5743. doi:10.1007/s10853-009-3805-0

    Article  Google Scholar 

  34. Tamayo A, Tellez L, Rubio J, Rubio F, Oteo JL (2010) Effect of reaction conditions on surface properties of TEOS–TBOT–PDMS hybrid materials. J Sol–Gel Sci Technol 55:94

    Article  Google Scholar 

  35. Gutmann V (1978) The donor–acceptor approach to molecular interactions. Plenum Press, New York

    Book  Google Scholar 

  36. Andrianov K (1961) Polymers with inorganic primary molecular chains. J Polym Sci 52:257

    Article  Google Scholar 

  37. Babonneau F, Bois L, Livage J, Dire S (1993) In: Komarneni S, Parker JC, Thomas GJ (eds) Nanophase and nanocomposite materials. Materials Research Society, Pittsburgh

    Google Scholar 

  38. Morales-Florez V, Toledo-Fernandez JA, Mendoza-Serna R (2010) In: DelaRosa Fox N et al (eds) Mechanical properties of solids XI. Trans Tech Publications, Stafa-Zurich

    Google Scholar 

  39. Gerhardt L-C, Boccaccini AR (2010) Bioactive glass and glass–ceramic scaffolds for bone tissue. Eng Mater 3:3867

    Google Scholar 

  40. Salinas AJ, Merino JM, Babonneau F, Gil FJ, Vallet-Regí M (2007) Microstructure and macroscopic properties of bioactive CaO–SiO2–PDMS hybrids. J Biomed Mater Res B 81B:274

    Article  Google Scholar 

  41. Whang CM, Seo DW, Oh EO, Kim YH (2005) Compositional dependence of apatite formation in sol–gel derived organic–inorganic hybrids. Glass Phys Chem 31:396

    Article  Google Scholar 

  42. Tamayo A, Rubio J (2010) Structure modification by solvent addition into TEOS/PDMS hybrid materials. J Non-Cryst Solids 356:1742

    Article  Google Scholar 

  43. Ismail IMK, Pfeifer P (1994) Fractal analysis and surface roughness of non porous carbon fibers and carbon blacks. Langmuir 10:1532

    Article  Google Scholar 

  44. Elliott J (1994) Structure and chemistry of the apatites and other calcium orthophospates. Elsevier, New York

    Google Scholar 

  45. Hayakawa S, Kanaya T, Tsuru K et al (2003) Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles. Acta Biomater 9:4856

    Article  Google Scholar 

  46. Morrison SR (1977) The chemical physics of surfaces. Plenum Press, NY

    Book  Google Scholar 

  47. Tsuru K, Aburatani Y, Yabuta T, Hayakawa S, Ohtsuki C, Osaka A (2001) Synthesis and in vitro behavior of organically modified silicate containing Ca ions. J Sol–Gel Sci Technol 21:89

    Article  Google Scholar 

  48. Ligner G, Vidal A, Balard H, Papirer E (1990) Variation of the specific interaction capacity of heat-treated amorphous and crystalline silicas. J Colloid Interface Sci 134:486

    Article  Google Scholar 

  49. Rubio F, Rubio J, Oteo JL (2000) Effect of the measurement temperature on the dispersive component of the surface free energy of a heat treated SiO2 xerogel. J Sol–Gel Sci Technol 18:115

    Article  Google Scholar 

  50. Shui M, Reng Y, Pu B, Li J (2004) Variation of surface characteristics of silica-coated calcium carbonate. J Colloid Interface Sci 273:205

    Article  Google Scholar 

  51. Herry C, Baudu M, Raveau D (2001) Estimation of the influence of structural elements of activated carbons on the energetic components of adsorption. Carbon 39:1879

    Article  Google Scholar 

  52. Smičiklas ID, Milonjić SK, Zec S (2000) An inverse gas chromatographic study of the adsorption of alkanes on hydroxyapatite. J Mater Sci 35:2825. doi:10.1023/A:1004795019433

    Article  Google Scholar 

  53. Perruchot C, Chehimi MM, Vaulay M-Jp, Benzarti K (2006) Characterisation of the surface thermodynamic properties of cement components by inverse gas chromatography at infinite dilution. Cem Concr Res 36:305

    Article  Google Scholar 

  54. Hamieh T, Fadlallah M-B, Schultz J (2002) New approach to characterise physicochemical properties of solid substrates by inverse gas chromatography at infinite dilution: III. Determination of the acid-base properties of some solid substrates (polymers, oxides and carbon fibres): a new model. J Chromatogr A 969:37

    Article  Google Scholar 

  55. Bogillo VI, Voelkel A (1997) Surface properties of rutile and its modified form—part 1. Surface characteristics studied by means of inverse gas chromatography. J Adhes Sci Technol 11:1513

    Article  Google Scholar 

  56. Fekete E, Móczó J, Pukánszky B (2004) Determination of the surface characteristics of particulate fillers by inverse gas chromatography at infinite dilution: a critical approach. J Colloid Interface Sci 269:143

    Article  Google Scholar 

  57. Oliva V, Mrabet B, Baeta Neves MI, Chehimi MM, Benzarti K (2002) Characterisation of cement pastes by inverse gas chromatography. J Chromatogr A 969:261

    Article  Google Scholar 

  58. Liu J, Shi F, Yang D (2004) Characterization of sol–gel-derived TiO2 and TiO2–SiO2 films for biomedical applications. J Mater Sci Technol 20:550

    Google Scholar 

  59. Bogillo VI, Shkilev VP, Voelkel A (1998) Determination of surface free energy components for heterogenous solids by means of inverse gas chromatography at infinite concentrations. J Mater Chem 8:1953

    Article  Google Scholar 

  60. Sun C, Berg JC (2002) Effect of moisture on the surface free energy and acid–base properties of mineral oxides. J Chromatogr A 969:59

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Spanish government for financial support provided to this research (Project ref. MAT2012-34552) A. Tamayo is indebted to CSIC for the JAE-Doc contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aitana Tamayo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamayo, A., Téllez, L., Rodríguez-Reyes, M. et al. Surface properties of bioactive TEOS–PDMS–TiO2–CaO ormosils. J Mater Sci 49, 4656–4669 (2014). https://doi.org/10.1007/s10853-014-8169-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8169-4

Keywords

Navigation