Skip to main content
Log in

Catalytic graphitization and formation of macroporous-activated carbon nanofibers from salt-induced and H2S-treated polyacrylonitrile

  • Polymer Fibers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We present here a facile method to produce macroporous-activated carbon nanofibers (AMP-CNFs) by post-treating electrospun cobalt(II) chloride (CoCl2) containing polyacrylonitrile (PAN/CoCl2) nanofibers with hydrogen sulfide (H2S) followed by carbonization. A range of techniques including scanning and transmission electron microscopy, FTIR and Raman spectroscopy is used to examine and characterize the process. Because of the phase behavior between carbon and cobalt, cobalt particles are formed in the nanofibers, some of which leave the fibers during the heat treatment process leading to macroporous fibrous structures. The number of the macroporous increase significantly with increasing CoCl2 concentration in the precursor H2S-treated PAN/CoCl2 nanofibers. The cobalt phase in the fibers also leads to catalytic graphitization of the carbon nanofibers. The produced AMP-CNFs may be a promising candidates in many applications including anode layer in lithium ion batteries, air and liquid purifiers in filters, as well as in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, New York

    Google Scholar 

  2. Vaughan O (2010) Nat Nanotechnol 5:386

    Article  CAS  Google Scholar 

  3. Baddour CE, Fadlallah F, Nasuhoglu D, Mitra R, Vandsburger L, Meunier JL (2009) Carbon 47:313

    Article  CAS  Google Scholar 

  4. Ji L, Zhang X (2009) Electrochem Commun 11:684

    Article  CAS  Google Scholar 

  5. Wang Z, Zhang JS (2011) Build Environ 46(758):768

    Google Scholar 

  6. Romero JV, Smith JWH, Sullivan BM, Mallay MG, Croll LM, Reynolds JA, Andress C, Simon M, Dahn JR (2011) ACS Comb Sci 13:639

    Article  CAS  Google Scholar 

  7. Soto ML, Moure A, Dominguez H, Parajo JC (2011) J Food Eng 105:1

    Article  CAS  Google Scholar 

  8. Eyer F, Jung N, Neuberger N, Witte A, Poethko T, Henke J, Zilker T (2008) Basic Clin Pharmacol 102:337

    Article  CAS  Google Scholar 

  9. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223

    Article  CAS  Google Scholar 

  10. Li D, Xia Y (2004) Adv Mater 16(14):1151

    Article  CAS  Google Scholar 

  11. Wu H, Hu L, Rowell MW, Kong D, Cha JJ, McDonough JR, Zhu J, Yang Y, McGehee MD, Cui Y (2010) Nano Lett 10:4242

    Article  CAS  Google Scholar 

  12. Sahay R, Kumar PS, Sridhar R, Sundaramurthy J, Venugopal J, Mhaisalkar SG, Ramakrishna S (2012) J Mater Chem 22:12953

    Article  CAS  Google Scholar 

  13. Yan KS, Kim C, Park SH, Kim JH, Lee WJ (2006) J Biomed Nanotechnol 2:103

    Article  Google Scholar 

  14. Fatema UK, Uddin AJ, Uemura K, Gotoh Y (2011) Text Res J 81:659

    Article  CAS  Google Scholar 

  15. Chung GS, Jo SM, Kim BC (2005) J Appl Polym Sci 97:165

    Article  CAS  Google Scholar 

  16. Kim C, Park SH, Lee WJ, Yang KS (2004) Electrochim Acta 50:877

    Article  CAS  Google Scholar 

  17. Kim C, Cho YJ, Yun WY, Ngoc BTN, Yang KS, Chang DR, Lee JW, Kojima M, Kim YA, Endo M (2007) Solid State Commun 142:20

    Article  CAS  Google Scholar 

  18. Liu T, Gu SY, Zhang YH, Ren J (2012) J Poly Res 19:9882

    Article  Google Scholar 

  19. Yang Y, Centrone A, Simeon F, Hatton TA, Rutledge GC (2011) Carbon 49:3395

    Article  CAS  Google Scholar 

  20. Wu J, Park HW, Yu A, Higgins D, Chen Z (2012) J Phys Chem 116:9427

    CAS  Google Scholar 

  21. Aykut Y (2012) Appl Mater Interfaces 4:3405

    Article  CAS  Google Scholar 

  22. Ko TH, Chen CY (1999) J Appl Polym Sci 74:1745

    Article  CAS  Google Scholar 

  23. Kang YH, Ahn K, Jeong SY, Bae JS, Jin JS, Kim HG, Hong SW, Cho CR (2011) Thin Solid Films 519:7090

    Article  CAS  Google Scholar 

  24. Deng S, Bai R, Chen JP (2003) J Colloid Interface Sci 260:265

    Article  CAS  Google Scholar 

  25. Rahman MM, Jamal A, Khan SB, Faisal M (2011) J Phys Chem 115:9503

    CAS  Google Scholar 

  26. Chen IH, Wang CC, Chen CY (2010) Carbon 48:604

    Article  CAS  Google Scholar 

  27. Ji L, Medford AJ, Zhang X (2009) J Mater Chem 19:5593

    Article  CAS  Google Scholar 

  28. Kim C, Yang KS, Kojima M, Yoshida K, Kim YJ, Kim YA, Endo M (2006) Adv Funct Mater 16:2393

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the Nonwovens Cooperative Research Center, NCRC at North Carolina State University and the Ministry of National Education of the Republic of Turkey. YA thanks Dr. Dale Bachelor at the Analytical Instrumentation Facility, NCSU for his assistance in TEM sample characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakup Aykut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aykut, Y., Pourdeyhimi, B. & Khan, S.A. Catalytic graphitization and formation of macroporous-activated carbon nanofibers from salt-induced and H2S-treated polyacrylonitrile. J Mater Sci 48, 7783–7790 (2013). https://doi.org/10.1007/s10853-013-7463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7463-x

Keywords

Navigation