Skip to main content
Log in

Damping and microstructure of fly ash-based geopolymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As environmentally-friendly materials, geopolymers have the potential to replace ordinary Portland cement (OPC) for the construction of railway sleepers and multi-flue chimneys, where the vibration control capabilities of the material must be considered. The critical damping value (ξ) is the main parameter in relation to vibration reduction. In this study, the traditional logarithmic decrement technique was used to measure the ξ of geopolymers. Geopolymers were prepared by activating fly ash using alkali solutions with different SiO2/Na2O ratios. The results show that the ξ of the geopolymers is similar to that of the OPC counterpart. Finite element analysis (FEM) based on the Rayleigh damping model was conducted to replicate the test results, and scanning electron microscopy and mercury-intrusion porosimetry were used to study the microstructure of the geopolymers. A discussion of the possible damping mechanisms based on the microstructural investigation and the FEM analysis is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scrivener KL, Kirkpatrick RJ (2008) Cem Concr Res 38:128

    Article  CAS  Google Scholar 

  2. Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2005) ACI Mater J 101:467

    Google Scholar 

  3. Sumajouw D, Hardjito D, Wallah S, Rangan B (2007) J Mater Sci 42:3124. doi:10.1007/s10853-006-0523-8

    Article  CAS  Google Scholar 

  4. Davidovits J (1979) SPE PACTEC 79, Society of Plastic Engineers, Brookfield, p 151

  5. Davidovits J (1991) J Therm Anal 37:1633

    Article  CAS  Google Scholar 

  6. Rahier H, Mele B, Biesemans M, Wastiels J, Wu X (1996) J Mater Sci 31:71. doi:10.1007/bf00355128

    Article  CAS  Google Scholar 

  7. Sofi M, van Deventer JSJ, Mendis PA, Lukey GC (2007) Cem Concr Res 37:251

    Article  CAS  Google Scholar 

  8. Pan Z, Sanjayan JG, Kong DLY (2012) Constr Build Mater 36:365

    Article  CAS  Google Scholar 

  9. Thokchom S, Ghosh P, Ghosh S (2009) Int J Recent Trends Eng 1:36

    Google Scholar 

  10. García-Lodeiro I, Palomo A, Fernández-Jiménez A (2007) Cem Concr Res 37:175

    Article  Google Scholar 

  11. Duxson P, Fernández-Jiménez A, Provis J, Lukey G, Palomo A, van Deventer J (2007) J Mater Sci 42:2917. doi:10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  12. van Jaarsveld JGS, van Deventer JSJ, Lukey GC (2003) Mater Lett 57:1272

    Article  Google Scholar 

  13. Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ (2005) Colloids Surf A Physicochem Eng Asp 269:47

    Article  CAS  Google Scholar 

  14. Khalil MY, Merz E (1994) J Nucl Mater 211:141

    Article  CAS  Google Scholar 

  15. van Jaarsveld JGS, van Deventer JSJ, Lukey GC (2002) Chem Eng J 89:63

    Article  Google Scholar 

  16. Barbosa VFF, MacKenzie KJD (2003) Mater Res Bull 38:319

    Article  CAS  Google Scholar 

  17. Barbosa VFF, MacKenzie KJD (2003) Mater Lett 57:1477

    Article  CAS  Google Scholar 

  18. Pan Z, Sanjayan JG (2011) Cem Concr Compos 34:261

    Article  Google Scholar 

  19. Bakharev T (2005) Cem Concr Res 35:658

    Article  CAS  Google Scholar 

  20. Palomo A, Fernández-Jiménez A, López-Hombrados C, Lleyda JL (2004) 8th CANMET/ACI International conference on fly ash, silica fume, slag and natural pozzolans in concrete, Las Vegas, p 75

  21. CIAQ (2010) Concrete industry association, Queensland

  22. Remennikov AM, Kaewunruen S (2005) University of Wollongong

  23. Swamy N, Rigby G (1971) Mater Struct 4:13. doi:10.1007/bf02473927

    Google Scholar 

  24. Toksoz MN, Johnston DH, Timur A (1979) Geophysics 44:681

    Article  Google Scholar 

  25. Biot MA (1962) J Appl Phys 33:1482

    Article  Google Scholar 

  26. Biot MA (1962) J Acoust Soc Am 34:1254

    Article  Google Scholar 

  27. Stoll RD, Bryan GM (1970) J Acoust Soc Am 47:1440

    Article  Google Scholar 

  28. Bert CW (1973) J Sound Vib 29:129

    Article  Google Scholar 

  29. Goldsmith W, Polivka M, Yang T (1966) Exp Mech 6:65. doi:10.1007/bf02326224

    Article  Google Scholar 

  30. Jordan RW (1980) Mag Concr Res 32:195

    Article  Google Scholar 

  31. Spooner DC, Pomeroy CD, Dougill JW (1976) Mag Concr Res 28:21

    Article  Google Scholar 

  32. Malhotra VM, Carino NJ (2004) Handbook on nondestructive testing of concrete. CRC Press, Boca Raton

  33. Orak S (2000) Cem Concr Res 30:171

    Article  CAS  Google Scholar 

  34. Salzmann A, Fragomeni S, Loo Y-C (2003) Adv Struct Eng 6:53

    Article  Google Scholar 

  35. Schroeder MR (1965) J Acoust Soc Am 37:1187

    Article  Google Scholar 

  36. Wang Q, Deng X (1999) J Solids Struct 36:3443

    Article  Google Scholar 

  37. Chopra A (2007) Dynamics of structures-theory and applications to earthquake engineering Pearson. Prentice Hall, Upper Saddle River

    Google Scholar 

  38. Liu M, Gorman DG (1995) Comput Struct 57:277

    Article  Google Scholar 

  39. Clough RW, Penzien JJ (1993) Dynamics of structures. McGraw-Hill, New York

  40. Zuda L, Drchalová J, Rovnaník P, Bayer P, Keršner Z, Černý R (2010) Cem Concr Compos 32:157

    Article  CAS  Google Scholar 

  41. Rahier H, Simons W, Van Mele B, Biesemans M (1997) J Mater Sci 32:2237. doi:10.1023/a:1018563914630

    Article  CAS  Google Scholar 

  42. Sindhunata van Deventer JSJ, Lukey GC (2006) Ind Eng Chem Res 45:3559

    Article  Google Scholar 

  43. Williams RP, Hart RD, van Riessen A (2011) J Am Ceram Soc 94:2663. doi:10.1111/j.1551-2916.2011.04410.x

    Article  CAS  Google Scholar 

  44. Aligizaki KK (2005) Pore structure of cement-based materials. Taylor & Francis Group, New York

    Google Scholar 

  45. Bentz DP, Snyder KA, Stutzma PE (1997) In: Justnes H (ed) Proceedings of the 10th international congress on the chemistry of cement, Gothenburg, Sweden, p 78

  46. Cook RA, Hover KC (1999) Cem Concr Res 29:933

    Article  CAS  Google Scholar 

  47. Davidovits J, Davidovics M (2008) In: Wachtman JB (ed) Proceedings of the 12th annual conference on composites and advanced ceramic materials: ceramic engineering and science proceedings. Wiley, Hoboken, p 835

  48. Nochaiya T, Chaipanich A (2010) Appl Surf Sci 257:1941

    Article  Google Scholar 

  49. Lizcano M, Gonzalez A, Basu S, Lozano K, Radovic M (2011) J Am Ceram Soc 95:2169. doi:10.1111/j.1551-2916.2012.05184.x

    Article  Google Scholar 

  50. Davidovits J (2008) Geopolymer chemistry and applications. Geopolymer Institute, Saint-Quentin

    Google Scholar 

  51. Perera DS, Vance ER, Finnie KS, Blackford MG, Hanna JV, Cassidy DJ, Nicholson CL (2005) Ceram Trans 185:225

    Google Scholar 

  52. Brown PW, Shi D (1991) In: Skalny J, Mindess S (eds) Materials science of concrete II. The American Ceramic Society, Westerville, p 83

    Google Scholar 

  53. Nielsen LF (1984) J Am Ceram Soc 67:93. doi:10.1111/j.1151-2916.1984.tb09622.x

    Article  CAS  Google Scholar 

  54. Okada K, Ooyama A, Isobe T, Kameshima Y, Nakajima A, MacKenzie KJD (2009) J Eur Ceram Soc 29:1917

    Article  CAS  Google Scholar 

  55. Zhu Y, Zhou W, Wang J, Wang B, Wu J, Huang G (2007) J Phys Chem B 111:11388. doi:10.1021/jp071670v

    Article  CAS  Google Scholar 

  56. Higgins D, Bailey J (1976) J Mater Sci 11:1995. doi:10.1007/bf02403347

    Article  Google Scholar 

  57. Lloyd R, Provis J, van Deventer J (2009) J Mater Sci 44:620. doi:10.1007/s10853-008-3078-z

    Article  CAS  Google Scholar 

  58. Swamy RN (1970) In: Howells DA, Haigh IP, Taylor C (eds) Dynamics waves in civil engineering, proceedings of a conference organized by the Society for Earthquake and Civil Engineering Dynamics. Wiley Interscience, London, p 521

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Australia Research Council, as part of Project DP110101095, and the use of the facilities within the Monash Centre for Electron Microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Hui Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Z., Feng, K.N., Gong, K. et al. Damping and microstructure of fly ash-based geopolymers. J Mater Sci 48, 3128–3137 (2013). https://doi.org/10.1007/s10853-012-7090-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7090-y

Keywords

Navigation