Skip to main content

Advertisement

Log in

Effect of heat treatment on microstructure and microhardness evolution in a Ti–6Al–4V alloy processed by high-pressure torsion

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A Ti–6Al–4V alloy was heat-treated to give two types of microstructures with different volume fraction of equiaxed α phase and lamellar (α + β) microstructure. Disks were cut from the heat-treated rods and processed by quasi-constrained high-pressure torsion (HPT) at room temperature with an applied pressure of 6.0 GPa and torsional straining from 1/4 to 20 turns. The results show that there is a gradual evolution of homogeneity in microhardness and grain size with increasing numbers of revolutions in HPT such that the microhardness values attain a maximum constant value across the disk after processing by HPT for 10 turns and the measured equilibrium grain sizes after 20 turns are ~130 nm in Ti64-1 and ~70 in Ti64-2. The results show also that a larger fraction of lamellar (α + β) in the microstructure of Ti–6Al–4V leads to a higher hardenability after processing by HPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:104

    Article  Google Scholar 

  2. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58(4):33

    Article  Google Scholar 

  3. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  4. Zhilyaev AP, Kim BK, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Scripta Mater 46:575

    Article  CAS  Google Scholar 

  5. Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753

    Article  CAS  Google Scholar 

  6. Zhilyaev AP, Kim BK, Szpunar JA, Baró MD, Langdon TG (2005) Mater Sci Eng A381:377

    Google Scholar 

  7. Zhu YT, Lowe TC, Langdon TG (2004) Scripta Mater 51:825

    Article  CAS  Google Scholar 

  8. Yapici GG, Karaman I, Luo ZP (2006) Acta Mater 54:3755

    Article  CAS  Google Scholar 

  9. Tabachnikova ED, Podolskiy AV, Bengus VZ, Smirnov SN, Bidylo MI, Csach K, Miskuf J, Saitova LR, Semenova IP, Valiev RZ (2009) Mater Sci Eng A503:106

    CAS  Google Scholar 

  10. Saitova LR, Höppel HW, Göken M, Semenova IP, Raab GI, Valiev RZ (2009) Mater Sci Eng A503:145

    CAS  Google Scholar 

  11. Semenova IP, Yakushina EB, Nurgaleeva VV, Valiev RZ (2009) Int J Mater Res 100:1691

    Article  CAS  Google Scholar 

  12. Stolyarov VV, Shestakova LO, Zhu YT, Valiev RZ (1999) Nanostruct Mater 12:923

    Article  Google Scholar 

  13. Sergueeva AV, Stolyarov VV, Valiev RZ, Mukherjee AK (2000) Scripta Mater 43:819

    Article  CAS  Google Scholar 

  14. Mishra RS, Stolyarov VV, Echer C, Valiev RZ, Mukherjee AK (2001) Mater Sci Eng A298:44

    CAS  Google Scholar 

  15. Sergueeva AV, Stolyarov VV, Valiev RZ, Mukherjee AK (2002) Mater Sci Eng A323:318

    CAS  Google Scholar 

  16. Wang YC, Langdon TG (2013) Mater Sci Eng A559:861

    Google Scholar 

  17. Xu C, Horita Z, Langdon TG (2008) Acta Mater 56:5168

    Article  CAS  Google Scholar 

  18. Figueiredo RB, Cetlin PR, Langdon TG (2011) Mater Sci Eng A528:8198

    Google Scholar 

  19. Figueiredo RB, Pereira PHR, Aguilar MTP, Cetlin PR, Langdon TG (2012) Acta Mater 60:3190

    Article  CAS  Google Scholar 

  20. Serre P, Figueiredo RB, Gao N, Langdon TG (2011) Mater Sci Eng A528:3601

    CAS  Google Scholar 

  21. Kawasaki M, Langdon TG (2008) Mater Sci Eng A498:341

    CAS  Google Scholar 

  22. Vorhauer A, Pippan R (2004) Scripta Mater 51:921

    Article  CAS  Google Scholar 

  23. Zhilyaev AP, McNelley TR, Langdon TG (2007) J Mater Sci 42:1517. doi:10.1007/s10853-006-0628-0

    Article  CAS  Google Scholar 

  24. Kawasaki M, Ahn B, Langdon TG (2010) Acta Mater 58:919

    Article  CAS  Google Scholar 

  25. Sabbaghianrad S, Kawasaki M, Langdon TG (2012) J Mater Sci 47:7789. doi:10.1007/s10853-012-6524-x

    Article  CAS  Google Scholar 

  26. Wongsa-Ngam J, Kawasaki M, Langdon TG (2012) J Mater Sci 47:7782. doi:10.1007/s10853-012-6587-8

    Article  CAS  Google Scholar 

  27. Langdon TG (2007) Mater Sci Eng A462:3

    CAS  Google Scholar 

  28. Zhilyaev AP, Oh-ishi K, Langdon TG, McNelley TR (2005) Mater Sci Eng A410–411:277

    Google Scholar 

  29. An XH, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2010) Scripta Mater 63:560

    Article  CAS  Google Scholar 

  30. Valiev RZ, Ivanisenko YuV, Rauch EF, Baudelet B (1996) Acta Mater 44:4705

    Article  CAS  Google Scholar 

  31. Wetscher F, Vorhauer A, Stock R, Pippan R (2004) Mater Sci Eng A387–389:809

    Google Scholar 

Download references

Acknowledgements

This study was supported in part by the National Key Laboratory of Science and Technology on Materials under Shock and Impact under funding No. 9140A12060110BQ01, in part by the National Science Foundation of the United States under Grant No. DMR-1160966 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Chun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y.C., Langdon, T.G. Effect of heat treatment on microstructure and microhardness evolution in a Ti–6Al–4V alloy processed by high-pressure torsion. J Mater Sci 48, 4646–4652 (2013). https://doi.org/10.1007/s10853-012-7071-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7071-1

Keywords

Navigation