Skip to main content
Log in

Electronic structure of Li2O2 {0001} surfaces

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The surface properties of the Li2O2 discharge phase are expected to impact strongly the capacity, rate capability, and rechargeability of Li-oxygen batteries. Prior calculations have suggested that the presence of half-metallic surface states in Li2O2 may mitigate electrical passivation resulting from the growth of Li2O2, which is a bulk insulator. Here we revisit the electronic structure of bulk Li2O2 and the dominant Li2O2 {0001} surface by comparing results obtained with the PBE GGA functional, the HSE06 hybrid functional, and quasiparticle GW methods. Our results suggest that the bulk band gap lies between the value predicted by the G0W0 method, 5.15 eV, and the value predicted by the self-consistent quasiparticle GW (scGW) approximation, 6.37 eV. The PBE, HSE06, and scGW methods agree that the most stable surface, an oxygen-rich {0001} termination, is indeed half-metallic. This result supports the notion that the electronic structure of surfaces may play an important role in understanding performance limitations in Li-oxygen batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cairns EJ, Albertus P (2010) Annu Rev Chem Biomol Eng 1(1):299

    Article  CAS  Google Scholar 

  2. Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2012) J Electrochem Soc 159(2):R1

    Article  CAS  Google Scholar 

  3. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Nat Mater 11(1):19

    Article  CAS  Google Scholar 

  4. Beattie SD, Manolescu DM, Blair SL (2009) J Electrochem Soc 156(1):A44. doi:10.1149/1.3005989

    Article  CAS  Google Scholar 

  5. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) J Phys Chem Lett 1(14):2193. doi:10.1021/jz1005384

    Article  CAS  Google Scholar 

  6. McCloskey BD, Bethune DS, Shelby RM, Girishkumar G, Luntz AC (2011) J Phys Chem Lett 2(10):1161. doi:10.1021/jz200352v

    Article  CAS  Google Scholar 

  7. Freunberger SA, Chen YH, Peng ZQ, Griffin JM, Hardwick LJ, Barde F, Novak P, Bruce PG (2011) J Am Chem Soc 133(20):8040. doi:10.1021/ja2021747

    Article  CAS  Google Scholar 

  8. Xiao J, Hu JZ, Wang DY, Hu DH, Xu W, Graff GL, Nie ZM, Liu J, Zhang JG (2011) J Power Sources 196(13):5674. doi:10.1016/j.jpowsour.2011.02.060

    Article  CAS  Google Scholar 

  9. Xu W, Viswanathan VV, Wang DY, Towne SA, Xiao J, Nie ZM, Hu DH, Zhang JG (2011) J Power Sources 196(8):3894. doi:10.1016/j.jpowsour.2010.12.065

    Article  CAS  Google Scholar 

  10. Mizuno F, Nakanishi S, Kotani Y, Yokoishi S, Iba H (2010) Electrochemistry 78(5):403

    Article  CAS  Google Scholar 

  11. Chase MW (1998) NIST-JANAF thermochemical tables. American Institute of Physics, Woodbury

    Google Scholar 

  12. Abraham KM, Jiang Z (1996) J Electrochem Soc 143(1):1

    Article  CAS  Google Scholar 

  13. Débart A, Bao J, Armstrong G, Bruce PG (2007) J Power Sources 174(2):1177. doi:10.1016/j.jpowsour.2007.06.180

    Article  Google Scholar 

  14. Lu YC, Kwabi DG, Yao KPC, Harding JR, Zhou JG, Zuin L, Shao-Horn Y (2011) Energy Environ Sci 4(8):2999. doi:10.1039/c1ee01500a

    Article  CAS  Google Scholar 

  15. Laoire CO, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2011) J Electrochem Soc 158(3):A302. doi:10.1149/1.3531981

    Article  CAS  Google Scholar 

  16. Ogasawara T, Débart A, Holzapfel M, Novak P, Bruce PG (2006) J Am Chem Soc 128(4):1390. doi:10.1021/ja056811q

    Article  CAS  Google Scholar 

  17. Read J (2002) J Electrochem Soc 149(9):A1190. doi:10.1149/1.1498256

    Article  CAS  Google Scholar 

  18. Thapa AK, Saimen K, Ishihara T (2010) Electrochem Solid State Lett 13(11):A165. doi:10.1149/1.3481762

    Article  CAS  Google Scholar 

  19. Zhang SS, Foster D, Read J (2010) J Power Sources 195(4):1235. doi:10.1016/j.jpowsour.2009.08.088

    Article  CAS  Google Scholar 

  20. Thapa AK, Ishihara T (2011) J Power Sources 196(16):7016. doi:10.1016/j.jpowsour.2010.09.112

    Article  CAS  Google Scholar 

  21. Lu YC, Gasteiger HA, Parent MC, Chiloyan V, Shao-Horn Y (2010) Electrochem Solid State Lett 13(6):A69. doi:10.1149/1.3363047

    Article  CAS  Google Scholar 

  22. Albertus P, Girishkumar G, McCloskey B, Sanchez-Carrera RS, Kozinsky B, Christensen J, Luntz AC (2011) J Electrochem Soc 158(3):A343. doi:10.1149/1.3527055

    Article  CAS  Google Scholar 

  23. Viswanathan V, Thygesen KS, Hummelshøj JS, Nørskov JK, Girishkumar G, McCloskey BD, Luntz AC (2011) J Chem Phys 135(21):214704

    Article  CAS  Google Scholar 

  24. Hummelshøj JS, Blomqvist J, Datta S, Vegge T, Rossmeisl J, Thygesen KS, Luntz AC, Jacobsen KW, Nørskov JK (2010) J Chem Phys 132(7):071101. doi:07110110.1063/1.3298994

    Article  Google Scholar 

  25. Radin MD, Rodriguez JF, Tian F, Siegel DJ (2011) J Am Chem Soc 134(2):1093. doi:10.1021/ja208944x

    Article  Google Scholar 

  26. Ong SP, Mo Y, Ceder G (2012) Phys Rev B 85(8):081105

    Article  Google Scholar 

  27. Kang J, Jung YS, Wei S-H, Dillon AC (2012) Phys Rev B 85(3):035210

    Article  Google Scholar 

  28. Garcia-Lastra JM, Bass JD, Thygesen KS (2011) J Chem Phys 135(12):121101

    Article  CAS  Google Scholar 

  29. Chen JZ, Hummelshøj JS, Thygesen KS, Myrdal JSG, Nørskov JK, Vegge T (2011) Catal Today 165(1):2. doi:10.1016/j.cattod.2010.12.022

    Article  CAS  Google Scholar 

  30. Seriani N (2009) Nanotechnology 20(44):445703. doi:10.1088/0957-4484/20/44/445703

    Article  Google Scholar 

  31. Mo Y, Ong SP, Ceder G (2011) Phys Rev B 84(20):205446

    Article  Google Scholar 

  32. Wulff G (1901) Z Krystallogr Miner 34(5/6):449

    CAS  Google Scholar 

  33. Xu W, Xu K, Viswanathan VV, Towne SA, Hardy JS, Xiao J, Nie Z, Hu D, Wang D, Zhang J-G (2011) J Power Sources 196(22):9631. doi:10.1016/j.jpowsour.2011.06.099

    Article  CAS  Google Scholar 

  34. Obrovac MN, Dunlap RA, Sanderson RJ, Dahn JR (2001) J Electrochem Soc 148(6):A576

    Article  CAS  Google Scholar 

  35. Poizot PL, Grugeon S, Dupont L, Tarascon J-M (2000) Nature 407:496

    Article  CAS  Google Scholar 

  36. Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  37. Cococcioni M, de Gironcoli S (2005) Phys Rev B 71(3):035105. doi:10.1103/PhysRevB.71.035105

    Article  Google Scholar 

  38. Shishkin M, Kresse G (2007) Phys Rev B 75(23):235102

    Article  Google Scholar 

  39. Fuchs F, Furthmüller J, Bechstedt F, Shishkin M, Kresse G (2007) Phys Rev B 76(11):115109

    Article  Google Scholar 

  40. Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118(18):8207. doi:10.1063/1.1564060

    Article  CAS  Google Scholar 

  41. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) J Chem Phys. doi:10.1063/1.2404663

    Google Scholar 

  42. Henderson TM, Paier J, Scuseria GE (2011) Phys Status Solidi B 248(4):767. doi:10.1002/pssb.201046303

    Article  CAS  Google Scholar 

  43. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  44. Shishkin M, Marsman M, Kresse G (2007) Phys Rev Lett 99(24):246403

    Article  CAS  Google Scholar 

  45. Shishkin M, Kresse G (2006) Phys Rev B 74(3):035101

    Article  Google Scholar 

  46. Kresse G, Furthmüller J (1996) Comput Mater Sci 6(1):15

    Article  CAS  Google Scholar 

  47. Kresse G, Furthmüller J (1996) Phys Rev B 54(16):11169

    Article  CAS  Google Scholar 

  48. Kresse G, Hafner J (1993) Phys Rev B 47(1):558

    Article  CAS  Google Scholar 

  49. Kresse G, Hafner J (1994) Phys Rev B 49(20):14251

    Article  CAS  Google Scholar 

  50. Blöchl PE (1994) Phys Rev B 50(24):17953. doi:10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  51. Kresse G, Joubert D (1999) Phys Rev B 59(3):1758. doi:10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  52. Monkhorst HJ, Pack JD (1976) Phys Rev B 13(12):5188

    Article  Google Scholar 

  53. Blöchl PE, Jepsen O, Andersen OK (1994) Phys Rev B 49(23):16223

    Article  Google Scholar 

  54. Wu H, Zhang H, Cheng X, Cai L (2007) Philos Mag 87(23):3373. doi:10.1080/14786430701286239

    Article  CAS  Google Scholar 

  55. Zhuravlev Y, Kravchenko N, Obolonskaya O (2010) Russ J Phys Chem B 4(1):20. doi:10.1134/s1990793110010045

    Article  Google Scholar 

  56. Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Angyan JG (2006) J Chem Phys 124(15):154709. doi:10.1063/1.2187006

    Article  CAS  Google Scholar 

  57. Tasker PW (1979) J Phys C 12(22):4977

    Article  CAS  Google Scholar 

  58. Claudine N (2000) J Phys 12(31):R367

    Google Scholar 

Download references

Acknowledgements

Financial support was provided by the U.S. Department of Energy’s U.S.-China Clean Energy Research Center for Clean Vehicle Consortium, Grant DE-PI0000012 and the University of Michigan-Shanghai Jiao Tong University Collaboration on Renewable Energy Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald J. Siegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radin, M.D., Tian, F. & Siegel, D.J. Electronic structure of Li2O2 {0001} surfaces. J Mater Sci 47, 7564–7570 (2012). https://doi.org/10.1007/s10853-012-6552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6552-6

Keywords

Navigation