Skip to main content
Log in

Self-healing of delamination fatigue cracks in carbon fibre–epoxy laminate using mendable thermoplastic

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article examines the self-healing repair of delamination damage in mendable carbon fibre–epoxy laminates under static or fatigue interlaminar loading. The healing of delamination cracks in laminates containing particles or fibres of the mendable thermoplastic poly[ethylene-co-(methacrylic acid)] (EMAA) was investigated. The results showed that the formation of large-scale bridging zone of EMAA ligaments along the crack upon healing yielded a large increase (~300%) in the static mode I interlaminar fracture toughness, exceeding the requirement of full restoration. The mendable laminates retained high healing efficiency with multiple repair cycles because of the capability of EMAA to reform the bridging zone under static delamination crack growth conditions. Under fatigue loading, healing by the EMAA was found to restore the mode I fatigue crack growth resistance, with the rates of growth being slightly less than that pertinent to the unmodified laminate. The EMAA bridging zone, which generated high toughness under static loading conditions, does not develop under fatigue loading because of rapid fatigue failure of the crack bridging ligaments. Similar to the multiple healing capability of EMAA under static loading, multiple healing of delamination fatigue cracks is confirmed, with the fatigue crack growth rates remaining approximately unchanged. This study shows that EMAA was capable of full recovery of fatigue crack growth resistance and superior healing efficiency for static loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rouchon J Deutsches Zentrum für Luft- und Raumfahrt e.V., Report No. NLR-TP-2009-221

  2. Hojo M, Ochiai S, Gustafson C-G, Tanaka K (1994) Eng Fract Mech 49:35

    Article  Google Scholar 

  3. Asp LE, Sjögren A, Greenhalgh ES (2001) J Comp Tech Res 23:55

    Article  CAS  Google Scholar 

  4. Hojo M, Ando T, Tanaka M, Adachi T, Ochiai S, Endo Y (2006) Int J Fatigue 28:1154

    Article  CAS  Google Scholar 

  5. Argüelles A, Vina J, Canteli AF, Castrillo MA, Bonhomme J (2008) Comp Sci Tech 68:2325

    Article  Google Scholar 

  6. Brunner AJ, Murphy N, Pinter G (2009) Eng Fract Mech 76:2678

    Article  Google Scholar 

  7. Wu DY, Meure S, Solomon D (2008) Prog Polym Sci 33:479

    Article  CAS  Google Scholar 

  8. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Nature 409:794

    Article  CAS  Google Scholar 

  9. Trask RS, Bond IP (2006) Smart Mater Struct 15:704

    Article  CAS  Google Scholar 

  10. Hamilton AR, Sottos NR, White SR (2010) Adv Mater 22:5159

    Article  CAS  Google Scholar 

  11. Koursaurakis A, Mouritz AP (2010) Smart Mater Struct 19

  12. Murphy EB, Wudl F (2010) Prog Polym Sci 35:223

    Article  CAS  Google Scholar 

  13. Park JS, Takahashi K, Guo Z, Wang Y, Bolanos E, Hamann-Schaffner C, Murphy E, Wudl F, Han HT (2008) J Comp Mater 42:2869

    Article  CAS  Google Scholar 

  14. Hayes SA, Jones FR, Marshiya K, Zhang W (2007) Compos A 38A:1116

    Article  CAS  Google Scholar 

  15. Meure S, Wu DY, Furman S (2009) Acta Mater 57:4312

    Article  CAS  Google Scholar 

  16. Meure S, Furman S, Khor S (2010) Macro Mater Eng 95:420

    Article  Google Scholar 

  17. Varley RJ, Van Der Zwaag S (2008) Polym Test 27:11

    Article  CAS  Google Scholar 

  18. Wang CH, Sidhu K, Yang T, Zhang J, Shanks R (2011) Compos A

  19. Pingkarawat K, Wang CH, Varley R, Mouritz AP Compos A (submitted)

  20. Yang T, Wang CH, Zhang J, He S, Mouritz AP Compos Sci Technol (submitted)

  21. Varley RJ, Meure S, Wu DY, Mayo S, Nairn K, Furman S Eur Polym J. http://dx.doi.org/10.1016/j.eurpolymj.2011.11.021

  22. Meure S, Wu D-Y, Furman SA (2010) Vib Spectrom 52:10

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by an Australian Research Council (ARC) Linkage project (LP100200328). The authors thank P. Tkaytck (RMIT) for his technical assistance with the interlaminar fracture toughness testing, and S. Meure (formerly from CSIRO) for his assistance in the preparation of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Mouritz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pingkarawat, K., Wang, C.H., Varley, R.J. et al. Self-healing of delamination fatigue cracks in carbon fibre–epoxy laminate using mendable thermoplastic. J Mater Sci 47, 4449–4456 (2012). https://doi.org/10.1007/s10853-012-6303-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6303-8

Keywords

Navigation