Skip to main content

Advertisement

Log in

Microstructure evolution and hardness variation during annealing of equal channel angular pressed ultra-fine grained nickel subjected to 12 passes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure, thermal stability and hardness of ultra-fine grained (UFG) Ni produced by 12 passes of equal channel angular pressing (ECAP) through the route Bc were studied. Comparing the microstructure and hardness of the as-ECAPed samples with the published data on UFG Ni obtained after 8 passes of ECAP through the route Bc reveals a smaller average grain size (230 nm in the present case compared with 270 nm in 8-pass Ni), significantly lower dislocation density (1.08 × 1014 m−2 compared with 9 × 1014 m−2 in 8-pass Ni) and lower hardness (2 GPa compared with 2.45 GPa for 8-pass Ni). Study of the thermal stability of the 12-pass UFG Ni revealed that recovery is dominant in the temperature range 150–250°C and recrystallisation occurred at temperatures >250 °C. The UFG microstructure is relatively stable up to about 400 °C. Due to the lower dislocation density and consequently a lower stored energy, the recrystallisation of 12-pass ECAP Ni occurred at a higher temperature (~250 °C) compared with the 8-pass Ni (~200 °C). In the 12-pass Nickel, hardness variation shows that its dependence on grain size is inversely linear rather than the common grain size−0.5 dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. A conventional AFM image (image of topography) is obtained by recording the changes in the vibrational amplitude (deflection) during scanning. In contrast, a phase image is obtained by monitoring the phase change between the input signal that drives the cantilever and the output signal.

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45(2):103

    Article  CAS  Google Scholar 

  2. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51(7):881

    Article  CAS  Google Scholar 

  3. Koch CC, Narayan J (2001) The inverse hall-petch effect—fact or artifact? In: Farkas D, Kung H, Mayo M, Swygenhoven H, Weertman J (eds) Materials research Society Symposium. Structure and mechanical properties of nanophase materials—theory and computer simulation versus experiment, Boston, MA

  4. Lee TR, Chang CP, Kao PW (2005) The tensile behavior and deformation microstructure of cryo-rolled and annealed pure nickel. Mater Sci Eng A 408(1–2):131

    Google Scholar 

  5. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Novel ultra-high straining process for bulk materials–development of the accumulative roll-bonding (arb) process. Acta Mater 47(2):579

    Article  CAS  Google Scholar 

  6. Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Strength and ductility of ultrafine grained aluminum and iron produced by arb and annealing. Scripta Mater 47(12):893

    Article  CAS  Google Scholar 

  7. Krasilnikov N, Lojkowski W, Pakiela Z, Valiev R (2005) Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation. Mater Sci Eng A 397(1–2):330

    Google Scholar 

  8. Zhilyaev AP, Gimazov AA, Soshnikova EP, Révész A, Langdon TG (2008) Microstructural characteristics of nickel processed to ultrahigh strains by high-pressure torsion. Mater Sci Eng A 489(1–2):207

    Google Scholar 

  9. Valiev RZ, Zehetbauer MJ, Estrin Y, Happel HW, Ivanisenko Y, Hahn H, Wilde G, Roven HJ, Sauvage X, Langdon TG (2007) The innovation potential of bulk nanostructured materials. Adv Eng Mater 9(7):527

    Article  Google Scholar 

  10. Dinda GP, Rösner H, Wilde G (2005) Synthesis of bulk nanostructured ni, ti and zr by repeated cold-rolling. Scripta Mater 52(7):577

    Article  CAS  Google Scholar 

  11. Neishi K, Horita Z, Langdon TG (2002) Grain refinement of pure nickel using equal-channel angular pressing. Mater Sci Eng A 325(1–2):54

    Google Scholar 

  12. Zhilyaev AP, Kim BK, Szpunar JA, Baró MD, Langdon TG (2005) The microstructural characteristics of ultrafine-grained nickel. Mater Sci Eng A 391(1–2):377

    Google Scholar 

  13. Raju KS, Krishna MG, Padmanabhan KA, Muraleedharan K, Gurao NP, Wilde G (2008) Grain size and grain boundary character distribution in ultra-fine grained (ecap) nickel. Mater Sci Eng A 491(1–2):1

    Google Scholar 

  14. Gao N (2008) Applications of differential scanning calorimetry on materials subjected by severe plastic deformation. Mater Sci Forum 584–586 PART 1:255–260

    Google Scholar 

  15. Ehrenfest P (1933) Phasenumwandlungen im ueblichen und erweiterten sinn, classifiziert nach den entsprechenden singularitaeten des thermodynamischen potentiales/p. Ehrenfest. In: Proceedings Koninklijke Akademie van Wetenschappen te Amsterdam, N. Z. Voorburgwal (N. V. Noord-Hollandsche Uitgevers Maatschappij), Amsterdam, p 68

  16. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier, Kiddington Oxford

    Google Scholar 

  17. Field DP, Bradford LT, Nowell MM, Lillo TM (2007) The role of annealing twins during recrystallization of cu. Acta Mater 55(12):4233

    Article  CAS  Google Scholar 

  18. Cho JH, Cho JS, Moon JT, Lee J, Cho YH, Kim YW, Rollett AD, Oh KH (2003) Recrystallization and grain growth of cold-drawn gold bonding wire. Metal Mater Trans A 34 A(5):1113

    Article  Google Scholar 

  19. Zhilyaev AP, Nurislamova GV, Baró MD, Valiev RZ, Langdon TG (2002) Thermal stability and microstructural evolution in ultrafine-grained nickel after equal-channel angular pressing (ecap). Metal Mater Trans A 33(6):1865

    Article  Google Scholar 

  20. Raju KS, Krishna MG, Padmanabhan KA, Wilde G (2007) On the recovery of the microstructure of heavily deformed nickel produced by ecap. In: Mittemeijer PDIEJ, Leineweber DA, Welzel DU (eds) 5th Size-Strain conference ‘Diffraction Analysis of the Microstructure of Materials’ (SS-V), Garmisch-Partenkirchen, p 84

  21. Warren BE (1990) X-ray diffraction. Wesley series in metallurgy and materials. Addison-Wesley, Addison

    Google Scholar 

  22. Mahajan S, Pande CS, Imam MA, Rath BB (1997) Formation of annealing twins in f. c. c. crystals. Acta Mater 45(6):2633

    Article  CAS  Google Scholar 

  23. Pande C, Imam M, Rath B (1990) Study of annealing twins in fcc metals and alloys. Metal Mater Trans A 21(11):2891

    Article  Google Scholar 

  24. Zhilyaev AP, Kim BK, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Orientation imaging microscopy of ultrafine-grained nickel. Scripta Mater 46(8):575

    Article  CAS  Google Scholar 

  25. Tsl oim analysis 5.1 users manual (2008) EDAX are part of AMETEK, Inc., Process and analytical instruments division.http://coen.boisestate.edu/frary/ebsd/OIMAnalysisManual.pdf

  26. Molodova X, Gottstein G, Winning M, Hellmig RJ (2007) Thermal stability of ecap processed pure copper. Mater Sci Eng A 460–461:204

    Google Scholar 

  27. Zhang Y, Liu JQ, Wang JT, Wu ZB, Liu F Influence of stacking fault energy on microstructures and mechanical properties of fee pure metals by equal channel angular pressing. In: TMS 2010–139th Annual Meeting and Exhibition, Seattle, WA, 2010. TMS 2010–139th Annual Meeting and Exhibition. p 803

  28. Prell M, Xu C, Langdon TG (2008) The evolution of homogeneity on longitudinal sections during processing by ecap. Mater Sci Eng A 480(1–2):449

    Google Scholar 

  29. Zhilyaev AP, Gubicza J, Nurislamova G, Révész Á, Suriñach S, Baró MD, Ungár T (2003) Microstructural characterization of ultrafine-grained nickel. Physi Solid Appl Res 198(2):263

    Article  CAS  Google Scholar 

  30. Han S, Lim C, Kim C, Kim S (2005) The microstructural evolution during the equal channel angular pressing process and its relationship with the tensile behavior of oxygen-free copper. Metal Mater Trans A 36(2):467

    Article  Google Scholar 

  31. Ferrasse S, Hartwig K, Goforth R, Segal V (1997) Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion. Metal Mater Trans A 28(4):1047

    Article  Google Scholar 

  32. Chakkingal U, Suriadi AB, Thomson PF (1998) Microstructure development during equal channel angular drawing of al at room temperature. Scripta Mater 39(6):677

    Article  CAS  Google Scholar 

  33. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1997) An investigation of microstructural evolution during equal-channel angular pressing. Acta Mater 45(11):4733

    Article  CAS  Google Scholar 

  34. Segal VM (1993) Simple shear as a metalworking process for advanced maerials technology. In: First International conference on Processing Materials for Properties, Honolulu, p 947

Download references

Acknowledgements

KAP thanks the DFG for a Mercator Visiting Professorship at the Institute of Materials Physics, University of Muenster, Germany. VSS thanks the Indo-US Science and Technology Forum for a sabbatical research fellowship. The authors are grateful to Prof. R.Z. Valiev, Ufa Aviation Technical University, Russia, for supplying the ECAP specimens used in the study. They are also thankful to Dr. Satyam Suwas for his keen interest in this work. KSR thanks A. Sankaran for a discussion on twinning. The facilities provided by the School of Physics and the Centre for Nanotechnology, University of Hyderabad are acknowledged. The EBSD studies were carried out using the SEM facility at the Institute Nano-Science Initiative, Indian Institute of Science, Bangalore and Indian Institute of Technology, Madras, set up with a DST-FIST grant. GW thanks the DFG for support. The authors are thankful to Dr. R. Sundaresan, ARCI, Hyderabad for allowing the use of an annealing furnace.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sitarama Raju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sitarama Raju, K., Ghanashyam Krishna, M., Padmanabhan, K.A. et al. Microstructure evolution and hardness variation during annealing of equal channel angular pressed ultra-fine grained nickel subjected to 12 passes. J Mater Sci 46, 2662–2671 (2011). https://doi.org/10.1007/s10853-010-5122-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5122-z

Keywords

Navigation