Skip to main content
Log in

Study of InN/GaN interfaces using molecular dynamics

  • Intergranular and Interphase Boundaries in Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Epitaxial growth of thin films is, in general, based on specific interfacial structures defined by a minimum of interfacial energy and usually influenced by the structural mismatch. In the present study, the structures and energies of (0001) InN/GaN epitaxial interfaces are studied using the Tersoff interatomic potential. The potential describes the metallic and intermetallic interactions sufficiently well and is assembled in order to accurately reproduce the lattice and elastic parameters of wurtzite Ga(In)-Nitrides. Different configurations are examined for each interface depending on polarity and atomic stacking. It is shown that the interfacial structures of InN thin films grown with indium polarity interfaces exhibit lower self-energies than those of N-polarity. Although the substrate and the epilayer were assumed to exhibit the wurtzite crystal structure, both wurtzite and zinc-blende type atomic stackings are possible at the interfacial region since they were found energetically degenerate within the accuracy of our model. Finally, the spatial location of the epitaxial interface is also energetically defined. Epitaxial interfaces in this system can in principle be imagined to pass through so-called single or double atomic bonds, but the former case was energetically more favourable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pankove JI, Moustakas TD (1998) In: Semiconductors and semimetals. Academic Press, New York

    Google Scholar 

  2. Morkoç H (2007) In: Nitride semiconductors and devices. Springer Series in Materials Science

  3. Von Pezold J, Bristowe PD (2005) J Mater Sci 40:3051

    Article  CAS  Google Scholar 

  4. Bernardini F, Fiorentini V (1998) Phys Rev B 57:R9427

    Article  CAS  Google Scholar 

  5. Liu PL, Chizmeshy AVG, Kouvelakis J, Tsong IST (2005) Phys Rev B 72:245335

    Article  Google Scholar 

  6. Mitate T, Mizuko S, Takahata H, Kakegawa R (2005) Appl Phys Lett 86:134103

    Article  Google Scholar 

  7. Wang X, Yoshikawa A (2004) Prog Cryst Growth 48/49:42

    Article  CAS  Google Scholar 

  8. Dimakis E, Tsagaraki K, Iliopoulos E, Komninou Ph, Delimitis A, Georgakilas A (2005) J Cryst Growth 278:367

    Article  CAS  Google Scholar 

  9. Georgakilas A, Mikroulis S, Cimalla V, Zervos M, Kostopoulos A, Komninou Ph, Kehagias Th, Karakostas Th (2001) Phys Status Solidi (a) 188:567

    Article  CAS  Google Scholar 

  10. Mikroulis S, Georgakilas A, Kostopoulos A, Cimalla V, Dimakis E, Komninou Ph (2002) Appl Phys Lett 80:2886

    Article  CAS  Google Scholar 

  11. Nari H, Matsuka F, Araki T, Suzuki A, Manishi Y (2004) J Cryst Growth 269:155

    Article  Google Scholar 

  12. Kioseoglou J, Komninou Ph, Karakostas Th (unpublished work)

  13. Tersoff J (1989) Phys Rev B 39:5566

    Article  CAS  Google Scholar 

  14. Tersoff J (1990) Phys Rev B 41:3248

    Article  CAS  Google Scholar 

  15. Albe K, Nordlund K, Nord J, Kuronen A (2002) Phys Rev B 66:035205

    Article  Google Scholar 

  16. Nord J, Albe K, Erhart P, Nordlund K (2003) J Phys: Condens Mat 15:5649

    CAS  Google Scholar 

  17. Benkabou F, Certier M, Aourag H (2003) Mol Simulat 29:201

    Article  CAS  Google Scholar 

  18. Nordlund K, Nord J, Frantz J, Keinonen J (2000) Comp Mater Sci 18:283

    Article  CAS  Google Scholar 

  19. Kioseoglou J, Dimitrakopulos GP, Komninou Ph, Polatoglou HM, Serra A, Bere A, Nouet G, Karakostas Th (2004) Phys Rev B 70:115331

    Article  Google Scholar 

  20. Nordlund K (2007) In: Introduction to atomistic simulations 2006 Lecture notes, https://doi.org/www.beam.acclab.helsinki.fi/~akuronen/atomistiset/lecturenotes/as on 3 July 2007

  21. Beeler JR, Kulcinski GL (1972) Agenda discussion: computer techniques in interatomic potentials and simulation of lattice defects. Plenum, New York, p 735

    Book  Google Scholar 

  22. Qian GX, Martin R, Chadi D (1988) Phys Rev B 38:7649

    Article  CAS  Google Scholar 

  23. Bourret A, Adelmann C, Daudin B, Rouviere J-L, Feuillet G, Mula G (2001) Phys Rev B 63:245307

    Article  Google Scholar 

  24. Delimitis A, Komninou Ph, Dimitrakopulos GP, Kehagias Th, Kioseoglou J, Karakostas Th, Nouet G (2007) Appl Phys Lett 90:061920

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the EC under the contract MRTN-CT-2004-005583 (PARSEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. Karakostas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kioseoglou, J., Kalessaki, E., Dimitrakopulos, G.P. et al. Study of InN/GaN interfaces using molecular dynamics. J Mater Sci 43, 3982–3988 (2008). https://doi.org/10.1007/s10853-007-2235-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2235-0

Keywords

Navigation