Skip to main content
Log in

Crystallization of amorphous silicon thin films: comparison between experimental and computer simulation results

  • Intergranular and Interphase Boundaries in Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polycrystalline silicon obtained by the crystallization of thin amorphous silicon films has been an important material for microelectronics technology during the last decades. Many properties are improved in crystallized amorphous silicon compared to the as-deposited polysilicon such as larger grain size, smoother surface, and higher-carrier mobility. In this work, the crystallization of amorphous silicon is investigated by combining transmission electron microscopy (TEM) observations and molecular dynamics calculations. TEM observations on a series of specimens have shown that the majority of the silicon grains are oriented with a \( {\left\langle {110} \right\rangle} \) zone axis normal to the surface. In order to understand the crystallization mechanism molecular dynamic simulations were performed. It is found that the \( {\left\langle {110} \right\rangle} \)c/amorphous interface exhibits the lowest reduced interfacial energy density while the \( {\left\langle {111} \right\rangle} \)c/amorphous has the lowest reduced energy differences per unit interfacial area. The most energetically unfavorable interface is \( {\left\langle {001} \right\rangle} \)c/amorphous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kouvatsos D, Voutsas AT, Hatalis MK (1999) J El Mat 28(1):19

    Article  CAS  Google Scholar 

  2. Hatalis MK, Greve DW (1988) J Appl Phys 63:2260

    Article  CAS  Google Scholar 

  3. Bonnel M, Duhamel N, Guendouz M, Haji L, Loisel B, Ruault P (1991) Jpn J Appl Phys 30(11B):L1924

    Article  CAS  Google Scholar 

  4. Subramanian V, Dankoski P, Degertekin L, Khuri-Yakub BT, Saraswat KC (1997) IEEE El Dev Lett 18(8):378

    Article  CAS  Google Scholar 

  5. Singh RK, Jung SM, Lee SM, Hummel RE (1998) J El Chem Soc 145(11):3963

    Article  CAS  Google Scholar 

  6. Bo XZ, Yao N, Sturm JC (2002) J Appl Phys 91(5):2910

    Article  CAS  Google Scholar 

  7. Efremov MD, Bolotov VV, Volodin VA, Fedina LI, Lipatnikov EA (1996) J Phys: Condens Matter 8:273

    CAS  Google Scholar 

  8. Huh H, Shin JH (2001) Appl Phys Lett 79(24):3956

    Article  CAS  Google Scholar 

  9. Izumi S, Hara S, Kumagai T, Sakai S (2004) Comp Mat Sci 31:279

    Article  CAS  Google Scholar 

  10. Park SH, Kim HJ, Kang KH, Lee JS, Choi YK, Kwon OM (2005) J Phys D: Appl Phys 38:1511

    Article  CAS  Google Scholar 

  11. Park SH, Kim HJ, Lee DB, Lee JS, Choi YK, Kwon OM (2004) J Superlattice Microst 35:205

    Article  CAS  Google Scholar 

  12. Stekolnikov AA, Furthmuller J, Bechstedt F (2002) Phys Rev B 65:115318

    Article  Google Scholar 

  13. Lu G-H, Huang M, Cuma M, Liu F (2005) Surf Sci 588:61

    Article  CAS  Google Scholar 

  14. Izumi S, Hara S, Kumagai T, Sakai S (2005) J Cryst Growth 274:47

    Article  CAS  Google Scholar 

  15. Marques L, Pelaz L, Lopez P, Aboy M, Santos I, Barbolla J (2005) Mat Sci And Eng B 124–125:72

    Article  Google Scholar 

  16. Tersoff J (1989) Phys Rev B 39:5566

    Article  CAS  Google Scholar 

  17. Tersoff J (1990) Phys Rev B 41:3248

    Article  CAS  Google Scholar 

  18. Hoover WG (1985) Phys Rev A 31(3):1695

    Article  CAS  Google Scholar 

  19. Nose S (1990) J Phys Cond Matt 2:SA115

    Article  Google Scholar 

Download references

Acknowledgements

This work is co-funded by the European Social Funds and National resources through the “PYTHAGORAS II” programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ph. Komninou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kioseoglou, J., Komninou, P., Dimitrakopulos, G.P. et al. Crystallization of amorphous silicon thin films: comparison between experimental and computer simulation results. J Mater Sci 43, 3976–3981 (2008). https://doi.org/10.1007/s10853-007-2226-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2226-1

Keywords

Navigation