Skip to main content

Advertisement

Log in

Solvent effects in the extraction and detection of polycyclic aromatic hydrocarbons from complex oils in complex environments

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Anthropogenic oil spills such as the 2010 Deepwater Horizon oil spill present a number of unique challenges in environmental remediation, detection, and monitoring of a wide range of toxicants in complex environments. We have previously reported the use of cyclodextrin derivatives to accomplish the selective extraction of polycyclic aromatic hydrocarbons (PAHs) and facilitate their detection via proximity-induced energy transfer. Reported herein is the ability of these cyclodextrins to operate in a real-world scenario: extracting PAHs from oil collected from an oil spill site and from tar ball extracts into crude seawater from the Narragansett Bay in Rhode Island. The ability of this system to operate in this complex environment highlights the practical significance of cyclodextrin-based systems, and a direct comparison of the results obtained in seawater with those obtained using a variety of aqueous solvent systems provides significant insights into the factors responsible for efficient performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. McNutt, M.K., Chu, S., Lubchenco, J., Hunter, T., Dreyfus, G., Murawski, S.A., Kennedy, D.M.: Applications of science and engineering to quantify and control the Deepwater Horizon oil spill. Proc. Natl Acad. Sci. USA 109, 20222–20228 (2012)

    Article  Google Scholar 

  2. Ruddy, B.M., Huettel, M., Kostka, J.E., Lobodin, V.V., Bythell, B.J., McKenna, A.M., Aeppli, C., Reddy, C.M., Nelson, R.K., Marshall, A.G., Rodgers, R.P.: Targeted petroleomics: analytical investigation of Macondo well oil oxidation products from Pensacola beach. Energy Fuels 28, 4043–4050 (2014)

    Article  CAS  Google Scholar 

  3. Hall, G.J., Frysinger, G.S., Aeppli, C., Carmichael, C.A., Gros, J., Lemkau, K.L., Nelson, R.K., Reddy, C.M.: Oxygenated weathering products of Deepwater Horizon oil come from surprising precursors. Mar. Pollut. Bull. 75, 140–149 (2013)

    Article  CAS  Google Scholar 

  4. Krahn, M.M., Ylitalo, G.M., Buzitis, J., Bolton, J.L., Wigren, C.A., Chan, S.-L., Varanasi, U.: Analyses for petroleum-related contaminants in marine fish and sediments following the Gulf oil spill. Mar. Pollut. Bull. 27, 285–292 (1993)

    Article  CAS  Google Scholar 

  5. John, G.F., Yin, F., Mulabagal, V., Hayworth, J.S., Clement, T.P.: Development and application of an analytical method using gas chromatography/triple quadrupole mass spectrometry for characterizing alkylated chrysenes in crude oil samples. Rapid Commun. Mass Spectrom. 28, 948–956 (2014)

    Article  CAS  Google Scholar 

  6. Aeppli, C., Carmichael, C.A., Nelson, R.K., Lemkau, K.L., Graham, W.M., Redmond, M.C., Valentine, D.L., Reddy, C.M.: Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues. Environ. Sci. Technol. 46, 8799–8807 (2012)

    Article  CAS  Google Scholar 

  7. Parker, A.M., Ferrer, I., Thurman, E.M., Rosario-Ortiz, F.L., Linden, K.G.: Determination of COREXIT components used in the Deepwater Horizon cleanup by liquid chromatography-ion trap mass spectrometry. Anal. Methods 6, 5498–5502 (2014)

    Article  CAS  Google Scholar 

  8. Serio, N., Chanthalyma, C., Prignano, L., Levine, M.: Cyclodextrin-enhanced extraction and energy transfer of carcinogens in complex oil environments. ACS Appl. Mater. Interfaces 5, 11951–11957 (2013)

    Article  CAS  Google Scholar 

  9. Serio, N., Levine, M.: Efficient extraction and detection of aromatic toxicants from crude oil and tar balls using multiple cyclodextrin derivatives. Mar. Pollut. Bull. 95, 242–247 (2015)

    Article  CAS  Google Scholar 

  10. Hamai, S.: Complex formation of tetrakis(4-sulfonatophenyl)porphyrin with γ-cyclodextrin, phenylalanine, and tryptophan in aqueous solution. J. Incl. Phenom. Macrocycl. Chem. 67, 471–481 (2010)

    Article  CAS  Google Scholar 

  11. Hamai, S.: Ternary inclusion complexes of γ-cyclodextrin with resorufin and organic cations in aqueous solution. Bull. Chem. Soc. Jpn 80, 1527–1533 (2007)

    Article  CAS  Google Scholar 

  12. Serio, N., Prignano, L., Peters, S., Levine, M.: Detection of medium-sized polycyclic aromatic hydrocarbons via fluorescence energy transfer. Polycycl. Aromat. Compd. 34, 561–572 (2014)

    Article  CAS  Google Scholar 

  13. Mako, T., Marks, P., Cook, N., Levine, M.: Fluorescent detection of polycyclic aromatic hydrocarbons in ternary cyclodextrin complexes. Supramol. Chem. 24, 743–747 (2012)

    Article  CAS  Google Scholar 

  14. Serio, N., Chanthalyma, C., Peters, S., Levine, D., Levine, M.: 2-Hydroxypropyl beta-cyclodextrin for the enhanced performance of dual function extraction and detection systems in complex oil environments. J. Incl. Phenom. Macrocycl. Chem. 81, 341–346 (2015)

    Article  CAS  Google Scholar 

  15. http://www.medicago.se/sites/default/files/pdf/productsheets/PBS_Buffer_v._01.pdf

  16. Robert-Baldo, G.L., Morris, M.J., Byrne, R.H.: Spectrophotometric determination of seawater pH using phenol red. Anal. Chem. 57, 2564–2567 (1985)

    Article  CAS  Google Scholar 

  17. Pytkowicz, R.M., Atlas, E., Culberson, C.H.: Chemical equilibrium in sea water. ACS Symp. Ser. 18, 1–24 (1975)

    Article  CAS  Google Scholar 

  18. Breslow, R.: Hydrophobic effects on simple organic reactions in water. Acc. Chem. Res. 24, 159–164 (1991)

    Article  CAS  Google Scholar 

  19. Breslow, R.: The hydrophobic effect in reaction mechanism studies and in catalysis by artificial enzymes. J. Phys. Org. Chem. 19, 813–822 (2006)

    Article  CAS  Google Scholar 

  20. Riley, K.E., Hobza, P.: On the importance and origin of aromatic interactions in chemistry and biodisciplines. Acc. Chem. Res. 46, 927–936 (2013)

    Article  CAS  Google Scholar 

  21. Schneider, H.-J., Yatsimirsky, A.K.: Selectivity in supramolecular host-guest complexes. Chem. Soc. Rev. 37, 263–277 (2008)

    Article  CAS  Google Scholar 

  22. Li, S., Xu, Y., Shen, Q., Liu, X., Lu, J., Chen, Y., Lu, T., Luo, C., Luo, X., Zheng, M., Jiang, H.: Non-covalent interactions with aromatic rings: current understanding and implications for rational drug design. Curr. Pharm. Des. 19, 6522–6533 (2013)

    Article  CAS  Google Scholar 

  23. Shepherd, J.L., Kell, A., Chung, E., Sinclar, C.W., Workentin, M.S., Bizzotto, D.: Selective reductive desorption of a SAM-coated gold electrode revealed using fluorescence microscopy. J. Am. Chem. Soc. 126, 8329–8355 (2004)

    Article  CAS  Google Scholar 

  24. Yin, F., Hayworth, J.S., Clement, T.P.: A tale of two recent spills-comparison of 2014 Galveston Bay and 2010 deepwater horizon oil spill residues. PLoS One 10, e0118098/1–e0118098/17 (2015)

    CAS  Google Scholar 

  25. Mendoza, W.G., Riemer, D.D., Zika, R.G.: Application of fluorescence and PARAFAC to assess vertical distribution of subsurface hydrocarbons and dispersant during the Deepwater Horizon oil spill. Environ. Sci. Process Impacts 15, 1017–1030 (2013)

    Article  CAS  Google Scholar 

  26. Aeppli, C., Reddy, C.M., Nelson, R.K., Kellermann, M.Y., Valentine, D.L.: Recurrent oil sheens at the Deepwater Horizon disaster site fingerprinted with synthetic hydrocarbon drilling fluids. Environ. Sci. Technol. 47, 8211–8219 (2013)

    Article  CAS  Google Scholar 

  27. McKenna, A.M., Nelson, R.K., Reddy, C.M., Savory, J.J., Kaiser, N.K., Fitzsimmons, J.E., Marshall, A.G., Rodgers, R.P.: Expansion of the analytical window for oil spill characterization by ultrahigh resolution mass spectrometry: beyond gas chromatography. Environ. Sci. Technol. 47, 7530–7539 (2013)

    CAS  Google Scholar 

  28. Warnock, A.M., Hagen, S.C., Passeri, D.L.: Marine tar residues: a review. Water Air Soil Pollut. 226, 1–24 (2015)

    Article  CAS  Google Scholar 

  29. Chen, Z., Chang, K., Capraro, B.R., Zhu, C., Hsu, C.-J., Baumgart, T.: Intradimer/intermolecular interactions suggest autoinhibition mechanism in Endophilin A1. J. Am. Chem. Soc. 136, 4557–4564 (2014)

    Article  CAS  Google Scholar 

  30. Fisher, D.L., Harper, J., Sailor, M.J.: Energy transfer quenching of porous Si photoluminescence by aromatic molecules. J. Am. Chem. Soc. 117, 7846–7847 (1995)

    Article  CAS  Google Scholar 

  31. Arakawa, T., Kita, Y., Ejima, D., Gagnon, P.: Solvent modulation of column chromatography. Protein Pept. Lett. 15, 544–555 (2008)

    Article  CAS  Google Scholar 

  32. Patonay, G., Fowler, K., Shapira, A., Nelson, G., Warner, I.M.: Cyclodextrin complexes of polyaromatic hydrocarbons in the presence of aliphatic alcohols. J. Incl. Phenom. 5, 717–723 (1987)

    Article  CAS  Google Scholar 

  33. Schneider, H.-J.: Binding mechanisms in supramolecular complexes. Angew. Chem. Int. Ed. 48, 3924–3977 (2009)

    Article  CAS  Google Scholar 

  34. Connors, K.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997)

    Article  CAS  Google Scholar 

  35. Müller, B.W., Albers, E.: Effect of hydrotropic substances on the complexation of sparingly soluble drugs with cyclodextrin derivatives and the influence of cyclodextrin complexation on the pharmacokinetics of the drugs. J. Pharm. Sci. 80, 599–604 (1991)

    Article  Google Scholar 

  36. Biedermann, F., Nau, W.M., Schneider, H.-J.: The hydrophobic effect revisited—studies with supramolecular complexes imply high-energy water as a noncovalent driving force. Angew. Chem. Int. Ed. 53, 11158–11171 (2014)

    Article  CAS  Google Scholar 

  37. Ross, P.D., Rekharsky, M.V.: Thermodynamics of hydrogen bond and hydrophobic interactions in cyclodextrin complexes. Biophys. J. 71, 2144–2154 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the Gulf of Mexico Research Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mindy Levine.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 21875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serio, N., Levine, M. Solvent effects in the extraction and detection of polycyclic aromatic hydrocarbons from complex oils in complex environments. J Incl Phenom Macrocycl Chem 84, 61–70 (2016). https://doi.org/10.1007/s10847-015-0583-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0583-y

Keywords

Navigation