Skip to main content
Log in

Hybrid Motion Planning Task Allocation Model for AUV’s Safe Maneuvering in a Realistic Ocean Environment

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a hybrid route-path planning model for an Autonomous Underwater Vehicle’s task assignment and management while the AUV is operating through the variable littoral waters. Several prioritized tasks distributed in a large scale terrain is defined first; then, considering the limitations over the mission time, vehicle’s battery, uncertainty and variability of the underlying operating field, appropriate mission timing and energy management is undertaken. The proposed objective is fulfilled by incorporating a route-planner that is in charge of prioritizing the list of available tasks according to available battery and a path-planer that acts in a smaller scale to provide vehicle’s safe deployment against environmental sudden changes. The synchronous process of the task assign-route and path planning is simulated using a specific composition of Differential Evolution and Firefly Optimization (DEFO) Algorithms. The simulation results indicate that the proposed hybrid model offers efficient performance in terms of completion of maximum number of assigned tasks while perfectly expending the minimum energy, provided by using the favorable current flow, and controlling the associated mission time. The Monte-Carlo test is also performed for further analysis. The corresponding results show the significant robustness of the model against uncertainties of the operating field and variations of mission conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

i :

Task index

ρ i :

Priority of task i

ξ i :

Risk percentage associated with task i

δ i :

Absolute time required for completion of task i

P :

Vertices of the network that corresponds to waypoints

E :

Edges of the network

m :

Number of waypoints in the network

k :

Number of edges in the network

\(p^{i}_{x,y,z}\) :

Position of arbitrary waypoint i in 3-D space

e i j :

An arbitrary edge that connects \(p^{i}_{x,y,z}\) to \(p^{j}_{x,y,z}\)

w i j :

The weight assigned to eij

d i j :

Distance between position of \(p^{i}_{x,y,z}\) and \(p^{j}_{x,y,z}\)

t i j :

Time required for traversing edge eij

Θ:

Obstacle

Θp :

Obstacle’s position

Θr :

Obstacle’s radius

ΘUr :

Obstacle’s uncertainty rate

V C :

The current velocity vector

u c :

X component of the current vector

v c :

Y component of the current vector

S :

Two dimensional x-y space

S o :

The center of the vortex in the current map

:

The radius of the vortex in the current map

I :

The strength of the vortex in the current map

Γ3−D :

Symbol of the three dimensional terrain

η :

The AUV state on NED frame {n}

[X, Y, Z]:

Vehicles North, x, East, y, Depth, z, position along the path ℘

ϕ :

The Euler angle of roll

θ :

The Euler angle of pitch

ψ :

The Euler angle of yaw

υ :

Vehicle’s water referenced velocity in the body frame {b}

u :

The surge component of the velocity υ

v :

The sway component of the velocity υ

w :

The heave component of the velocity υ

℘:

The potential trajectory generated by the local path planner

𝜗 :

Control point along the path ℘

n :

Number of control points along an arbitrary path ℘

L :

Length of the candidate path ℘

T :

The local path flight time

T e x p :

The expected time for passing an edge

CPU :

computational time for generating a local path

R :

An arbitrary route including sequences of tasks and waypoints

T R :

The route traveled time

T τ :

The total available time for the mission

T c o m p u t e :

Computation time for checking re-routing criterion and its process

C :

The cost of local path generated by path planner

C :

The cost of tasks completion

C R :

The total cost of route including C and C

References

  1. Iwakami, H., Ura, T., Asakawa, K., Hujii, T., Nose, Y., Kojima, J., Shirasaki, Y., Asia, T., Uchida, S., Higashi, N., Hukuchi, T.: Approaching whales by autonomous underwater vehicle. Mar. Technol. Soc. J. 36(1), 80–87 (2002)

    Article  Google Scholar 

  2. Marthiniussen, R., Vestgard, K., Klepaker, R., Storkersen, N.: HUGIN-AUV concept and operational experiences to date. In: Oceans’04 MTS/IEEE Techno-Ocean ’04 (IEEE Cat.No.04CH37600), pp. 2 (2004)

  3. An, E., Dhanak, M., Shay, L.K., Smith, S., Leer, J.V.: Coastal oceanography using a small AUV. J. Atmos. Ocean. Technol. 18, 215–234 (2001)

    Article  Google Scholar 

  4. Djapic, V., Nad, D.: Using Collaborative Autonomous Vehicles in Mine Countermeasures. Oceans’10 IEEE, Sydney (2010)

    Book  Google Scholar 

  5. Carsten, J., Ferguson, D., Stentz, A.: 3D field D*: improved path planning and replanning in three dimensions. In: IEEE International Conference on Intelligent Robots and Systems, pp. 3381–3386 (2006)

  6. Garau, B., Bonet, M., Alvarez, A., Ruiz, S., Pascual, A.: Path planning for autonomous underwater vehicles in realistic oceanic current fields: Application to gliders in the Western Mediterranean sea. J. Marit. Res. 6 (2), 5–21 (2009)

    Google Scholar 

  7. Koay, T.B., Chitre, M.: Energy-efficient path planning for fully propelled AUVs in congested coastal waters. Oceans 2013 MTS/IEEE Bergen: The Challenges of the Northern Dimension (2013)

  8. Petres, C., Pailhas, Y., Evans, J., Petillot, Y., Lane, D.: Underwater path planning using fast marching algorithms. Oceans Eur. Conf. Brest. France 2, 814–819 (2005)

    Google Scholar 

  9. Petres, C., Pailhas, Y., Patron, P., Petillot, Y., Evans, J., Lane, D.: Path planning for autonomous underwater vehicles. IEEE Trans. Robot. 23(2), 331–341 (2007)

    Article  Google Scholar 

  10. Cui, R., Li, Y., Yan, W.: Mutual information-based multi-AUV path planning for scalar field sampling using multidimensional RRT*. IEEE Trans. Syst. Man Cybern. Syst. 46 (5), 993–1004 (2016). https://doi.org/10.1109/TSMC.2015.2500027

    Article  Google Scholar 

  11. Yazdani, A.M., Sammut, K., Yakimenko, O.A., Lammas, A., MahmoudZadeh, S., Tang, Y.: IDVD-based trajectory generator for autonomous underwater docking operations. Robot. Auton. Syst. 92, 12–29 (2017)

    Article  Google Scholar 

  12. Kwok, K.S., Driessen, B.J., Phillips, C.A., Tovey, C.A.: Analyzing the multiple-target-multiple-agent scenario using optimal assignment algorithms. J. Intell. Robot. Syst. 35(1), 111–122 (2002)

    Article  MATH  Google Scholar 

  13. Higgins, A.J.: A dynamic tabu search for large-scale generalised assignment problems. Comput. Oper. Res. 28(8), 1039–1048 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, L., Shell, D.A.: Large-scale multi-robot task allocation via dynamic partitioning and distribution. Auton. Robot. 33(3), 291–307 (2012)

    Article  Google Scholar 

  15. Chiang, W.C., Russell, R.A.: Simulated annealing metaheuristics for the vehicle routing problem with time windows. Ann. Oper. Res. J. 63(1), 3–27 (1996)

    Article  MATH  Google Scholar 

  16. Lysgaard, J., Letchford, A.N., Eglese, R.W.: A new branch-and-cut algorithm for the capacitated vehicle routing problem. Math. Programm. 100(2), 423–445 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. MahmoudZadeh, S., Powers, D., Sammut, K.: An autonomous dynamic motion-planning architecture for efficient AUV mission time management in realistic sever ocean environment. J. Robot. Auton. Syst. 87, 81–103 (2017). https://doi.org/10.1016/j.robot.2016.09.007

    Article  Google Scholar 

  18. Roberge, V., Tarbouchi, M., Labonte, G.: Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans. Ind. Inf. 9(1), 132–141 (2013). https://doi.org/10.1109/TII.2012.2198665

    Article  Google Scholar 

  19. Besada-Portas, E., DeLaTorre, L., DeLaCruz, J.M., DeAndrés-Toro, B.: Evolutionary trajectory planner for multiple UAVs in realistic scenarios. IEEE Trans. Robot. 26(3), 619–634 (2010)

    Article  Google Scholar 

  20. MahmoudZadeh, S., Yazdani, A., Sammut, K., Powers, D.M.W.: AUV rendezvous online path planning in a highly cluttered undersea environment using evolutionary algorithms. In: Proceeding in Journal of Applied Soft Computing (ASOC). Online Dec (2017). https://doi.org/10.1016/j.asoc.2017.10.025

  21. Zeng, Z., Sammut, K., Lammas, A., He, F., Tang, Y.: Shell space decomposition based path planning for AUVs operating in a variable environment. Ocean Eng. 91, 181–195 (2014)

    Article  Google Scholar 

  22. Ataei, M., Yousefi-Koma, A.: Three-Dimensional Optimal Path Planning for Waypoint Guidance of an Autonomous Underwater Vehicle. Robotics and Autonomous Systems (2015)

  23. MahmoudZadeh, S., Powers, D., Sammut, K., Yazdani, A.M.: Differential Evolution for Efficient AUV Path Planning in Time Variant Uncertain Underwater Environment. Robotics (cs.RO). arXiv:1604.02523 (2016)

  24. MahmoudZadeh, S., Powers, D., Sammut, K., Lammas, A., Yazdani, A.M.: Optimal route planning with prioritized task scheduling for AUV missions. In: IEEE International Symposium on Robotics and Intelligent Sensors, pp. 7–15 (2015)

  25. MahmoudZadeh, S., Powers, D., Yazdani, A.M.: A novel efficient task-assign route planning method for AUV guidance in a dynamic cluttered environment. In: IEEE Congress on Evolutionary Computation (CEC). Vancouver, Canada. July. 678-684 CoRR arXiv:1604.02524 (2016)

  26. MahmoudZadeh, S., Powers, D., Sammut, K., Yazdani, A.M.: Toward efficient task assignment and motion planning for large scale underwater mission. Int. J. Adv. Robot. Syst. (SAGE) 13, 1–13 (2016). https://doi.org/10.1177/1729881416657974

    Article  Google Scholar 

  27. MahmoudZadeh, S., Powers, D., Sammut, K., Yazdani, A.M.: Biogeography-based combinatorial strategy for efficient AUV motion planning and task-time management. J. Mar. Sci. Appl. 15(3), 463–477 (2016). https://doi.org/10.1007/s11804-016-1382-6

    Google Scholar 

  28. MahmoudZadeh, S., Powers, D., Sammut, K., Yazdani, A.M.: A novel versatile architecture for autonomous underwater vehicle’s motion planning and task assignment. J. Soft Comput. 21(4), 1–24 (2016). https://doi.org/10.1007/s00500-016-2433-2

    Google Scholar 

  29. MahmoudZadeh, S., Powers, D., Atyabi, A.: UUV’s hierarchical DE-based motion planning in a semi dynamic underwater wireless sensor network. In: Proceeding of IEEE Transaction on Cybernetics (2018)

  30. MahmoudZadeh, S., Powers Atyabi, A.D., Sammut, K., Yazdani, A.: A hierarchal planning framework for AUV mission management in a spatio-temporal varying ocean. In: Computers & Electrical Engineering. Online 5 Jan (2018). https://doi.org/10.1016/j.compeleceng.2017.12.035

  31. Garau, B., Alvarez, A., Oliver, G.: AUV navigation through turbulent ocean environments supported by onboard H-ADCP. In: IEEE International Conference on Robotics and Automation. Orlando (2006)

  32. Fossen, T.I.: Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics Trondheim, Norway (2002)

    Google Scholar 

  33. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) 5th Symposium on Stochastic Algorithms, Foundations and Applications, vol. 5792, pp. 169–178. Lecture Notes in Computer Science (2009)

  34. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, UK (2010)

  35. Yang, X.S., He, X.: Firefly algorithm: Recent advances and applications. Int. J. Swarm Intell. 1(1), 36–50 (2013)

    Article  Google Scholar 

  36. Li, Z., Yang, C., Ding, N., Bogdan, S., Ge, T.: Robust adaptive motion control for underwater remotely operated vehicles with velocity constraints. Intern. J. Control. Autom. Syst. 10(2), 421–429 (2012)

    Article  Google Scholar 

  37. Price, K., Storn, R.: Differential evolution – A simple evolution strategy for fast optimization. Dr. Dobb’s J. 22(3), 18–24,78 (1997)

    MATH  Google Scholar 

  38. Li, Z., Yang, C., Su, C.Y., Ye, W.: Adaptive fuzzy-based motion generation and control of mobile under-actuated manipulators. Eng. Appl. Artif. Intell. 30, 86–95 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaiyeh MahmoudZadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MahmoudZadeh, S., Powers, D.M.W., Sammut, K. et al. Hybrid Motion Planning Task Allocation Model for AUV’s Safe Maneuvering in a Realistic Ocean Environment. J Intell Robot Syst 94, 265–282 (2019). https://doi.org/10.1007/s10846-018-0793-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0793-9

Keywords

Navigation