Skip to main content
Log in

A Conceptual Framework of Quality-Assured Fabrication, Delivery and Installation Processes for Liquefied Natural Gas (LNG) Plant Construction

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Construction productivity issues in the Liquefied Natural Gas (LNG) construction industry can lead to project cost blowouts. Time wasted by construction personnel getting the right information on megaprojects can be a substantial contributing factor. It appears that the communication on site is not cost effective, judging by the number of large project that have experienced budget overruns in the past. More importantly, as-built design documentation often fails the quality test, resulting in operational inefficiencies once the plant has been handed over from Construction to Operation Phase. Common errors during the static prefabrication, dispatch and installation processes can result in serious rework as a significant amount of construction time and budget is wasted. To minimise these problems, this paper recommends to better control the dynamic natures of construction. This study propagates a conceptual framework for assuring quality of modular construction in LNG plants by introducing a Situation Awareness construction environment with well-defined sensing and tracking technologies. While encountering situations inconsistent with plans during construction, such as time delay, fabrication errors, conflicts in terms of accessibility and constructability issues and so forth, sensors mounted in situ can discover such situations and recursively fed back to field personnel. Automation and robotics technologies, such as real-time path planning, collision detection and deviation examination utilizing as-planned building information model, can assist engineers to rapidly react with inconsistent situations and make acceptable decisions instead of partially or entirely suspending the workforce through massive reworks. In this study, we conduct a preliminary study in demonstrating the feasibility of utilizing sensory devices and automatic planning technologies. The expected results of adopting the framework are the quality-assured modular construction and execution plans during construction stages to save rework construction time and budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, X., Truijens, M., Hou, L., Wang, Y.: Application of collaborative mobile system in ar-based visualization, data storage and manipulation. In: Luo, Y. (ed.) Cooperative Design, Visualization, and Engineering, vol. 8091. Lecture Notes in Computer Science, pp. 221–226. Springer, Berlin Heidelberg (2013)

    Google Scholar 

  2. Ellis, M., Heyning, C., Legrand, O.: Extending the LNG boom: Improving Australian LNG productivity and competitiveness. In: McKinsey Global Institute. New York (2013)

  3. Taylor, C., Bradley, C., Dobbs, R., Thompson, F.D.C.: Beyond the boom: Australia’s productivity imperative. In: McKinsey Global Institute. New York (2012)

  4. Wang, X., Love, P.E.D., Kim, M.J., Park, C.-S., Sing, C.-P., Hou, L.: A conceptual framework for integrating building information modeling with augmented reality. Autom. Constr. 34, 37–44 (2013)

    Article  Google Scholar 

  5. Lin, W., Zhang, N., Gu, A.: LNG (liquefied natural gas): A necessary part in China’s future energy infrastructure. Energy 35(11), 4383–4391 (2010)

    Article  Google Scholar 

  6. Wakamatsu, Y., Matsui, S., Yatsuhashi, Y.: Off-the-shelf mid-small-mini-scale LNG plant - case study for application. In: 17th International Conference and Exhibition on Liquefied Natural Gas. Houston (2013)

  7. Babič, N.Č., Podbreznik, P., Rebolj, D.: Integrating resource production and construction using BIM. Autom. Constr. 19(5), 539–543 (2010)

    Article  Google Scholar 

  8. Vähä, P., Heikkilä, T., Kilpeläinen, P., Järviluoma, M., Gambao, E.: Extending automation of building construction — survey on potential sensor technologies and robotic applications. Autom. Constr. 36, 168–178 (2013)

    Article  Google Scholar 

  9. Akinci, B., Boukamp, F., Gordon, C., Huber, D., Lyons, C., Park, K.: A formalism for utilization of sensor systems and integrated project models for active construction quality control. Autom. Constr. 15(2), 124–138 (2006)

    Article  Google Scholar 

  10. Josephson, P.E., Hammarlund, Y.: The causes and costs of defects in construction: A study of seven building projects. Autom. Constr. 8(6), 681–687 (1999)

    Article  Google Scholar 

  11. Park, C.-S., Lee, D.-Y., Kwon, O.-S., Wang, X.: A framework for proactive construction defect management using BIM, augmented reality and ontology-based data collection template. Autom. Constr. 33, 61–71 (2013)

    Article  Google Scholar 

  12. Dong, A., Maher, M.L., Kim, M.J., Gu, N., Wang, X.: Construction defect management using a telematic digital workbench. Autom. Constr. 18(6), 814–824 (2009)

    Article  Google Scholar 

  13. Mell, P., Grance, T.: The NIST definition of cloud computing. Technical Report SP 800-145. National Institute for Standard and Technology (2011)

  14. Redmond, A., Hore, A., Alshawi, M., West, R.: Exploring how information exchanges can be enhanced through cloud BIM. Autom. Constr. 24, 175–183 (2012)

    Article  Google Scholar 

  15. Jiao, Y., Wang, Y., Zhang, S., Li, Y., Yang, B., Yuan, L.: A cloud approach to unified lifecycle data management in architecture, engineering, construction and facilities management: Integrating BIMs and SNS. Adv. Eng. Inf. 27(2), 173–188 (2013)

    Article  Google Scholar 

  16. Curry, E., O’Donnell, J., Corry, E., Hasan, S., Keane, M., O’Riain, S.: Linking building data in the cloud: Integrating cross-domain building data using linked data. Adv. Eng. Inf. 27(2), 206–219 (2013)

    Article  Google Scholar 

  17. Venters, W., Whitley, E.A.: A critical review of cloud computing: researching desires and realities. J. Inf. Technol. 27, 179–197 (2012)

    Article  Google Scholar 

  18. Kelm, A., Laußat, L., Meins-Becker, A., Platz, D., Khazaee, M.J., Costin, A.M., Helmus, M., Teizer, J.: Mobile passive Radio Frequency Identification (RFID) portal for automated and rapid control of Personal Protective Equipment (PPE) on construction sites. Autom. Constr. 36, 38–52 (2013)

    Article  Google Scholar 

  19. Zhang, C., Hammad, A., Bahnassi, H.: Collaborative multi-agent systems for construction equipment based on real-time field data capturing. J. Inf. Technol. Constr. 14, 204–228 (2009)

    Google Scholar 

  20. Behzadan, A.H., Timm, B.W., Kamat, V.R.: General-purpose modular hardware and software framework for mobile outdoor augmented reality applications in engineering. Adv. Eng. Inf. 22(1), 90–105 (2008)

    Article  Google Scholar 

  21. Anil, E.B., Tang, P., Akinci, B., Huber, D.: Deviation analysis method for the assessment of the quality of the as-is building information models generated from point cloud data. Autom. Constr. 35, 507–516 (2013)

    Article  Google Scholar 

  22. Chi, H.-L., Chen, Y.-C., Kang, S.-C., Hsieh, S.-H.: Development of user interface for tele-operated cranes. Adv. Eng. Inf. 26 (3), 641–652 (2012)

    Article  Google Scholar 

  23. Chen, H.-T., Wu, S.-W., Hsieh, S.-H.: Visualization of CCTV coverage in public building space using BIM technology. Vis. Eng. 1(1), 5 (2013)

    Article  Google Scholar 

  24. Kim, D., Kim, J., Lee, K., Park, C., Song, J., Kang, D.: Excavator tele-operation system using a human arm. Autom. Constr. 18(2), 173–182 (2009)

    Article  Google Scholar 

  25. Shapira, A., Rosenfeld, Y., Mizrahi, I.: Vision system for tower cranes. J. Constr. Eng. Manag. 134(5), 320–332 (2008)

    Article  Google Scholar 

  26. Teizer, J.: 3D range imaging camera sensing for active safety in construction. J. Inf. Technol. Constr. 13, 103–117 (2008)

    Google Scholar 

  27. Wang, X., Schnabel, M.A.: Mixed reality in architecture, design, and construction. Springer (2009)

  28. Wang, X., Gu, N., Marchant, D.: An empirical case study on designer’s perceptions of augmented reality within an architectural firm. J. Inf. Technol. Constr. 13, 536–552 (2008)

    Google Scholar 

  29. Wang, X.: Augmented reality in architecture and design: Potentials and challenges for application. Int. J. Archit. Comput. 7(2), 309–326 (2009)

    Article  Google Scholar 

  30. Wang, X.: Using augmented reality to plan virtual construction worksite. Int. J. Adv. Robot. Syst. 4(4), 501–512 (2007)

    Google Scholar 

  31. Shin, D.H., Dunston, P.S., Wang, X.: View changes in mixed reality-based collaborative virtual environments. ACM Trans. Appl. Percept. 2(1), 1–14 (2005)

    Article  Google Scholar 

  32. Wang, X., Dunston, P.S.: Design, strategies, and issues towards an augmented reality-based construction training platform. J. Inf. Technol. Constr. 12, 363–380 (2007)

    Google Scholar 

  33. Golparvar-Fard, M., Peña-Mora, F., Savarese, S.: Application of D 4AR - A 4-dimensional augmented reality model for automating construction progress monitoring data collection, processing and communication. J. Inf. Technol. Constr. 14, 129–153 (2009)

    Google Scholar 

  34. Schall, G., Mendez, E., Kruijff, E., Veas, E., Junghanns, S., Reitinger, B., Schmalstieg, D.: Handheld augmented reality for underground infrastructure visualization. Pers. Ubiquit. Comput. 13(4), 281–291 (2009)

    Article  Google Scholar 

  35. Comport, A.I., Marchand, E., Pressigout, M., Chaumette, F.: Real-time markerless tracking for augmented reality: The virtual visual servoing framework. IEEE Trans. Vis. Comput. Graph. 12(4), 615–628 (2006)

    Article  Google Scholar 

  36. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  37. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  38. Lai, K.-C., Kang, S.-C.: Collision detection strategies for virtual construction simulation. Autom. Constr. 18(6), 724–736 (2009)

    Article  Google Scholar 

  39. Yang, C.-E., Lin, J.J.-C., Hung, W.-H., Kang, S.-C.: Accessibility evaluation system for site layout planning - A tractor trailer example. Vis. Eng. 1(1), 12 (2013)

    Article  Google Scholar 

  40. Zhang, C., Hammad, A.: Improving lifting motion planning and re-planning of cranes with consideration for safety and efficiency. Adv. Eng. Inf. 26(2), 396–410 (2012)

    Article  Google Scholar 

  41. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hart, P.E., Nilsson, N.J., Raphael, B.: Correction to a formal basis for the heuristic determination of minimum cost paths. SIGART Newsl. 37, 28–29 (1972)

    Google Scholar 

  43. Kang, S., Miranda, E.: Planning and visualization for automated robotic crane erection processes in construction. Autom. Constr. 15(4), 398–414 (2006)

    Article  Google Scholar 

  44. Chang, Y.-C., Hung, W.-H., Kang, S.-C.: A fast path planning method for single and dual crane erections. Autom. Constr. 22, 468–480 (2012)

    Article  Google Scholar 

  45. Son, S., Park, H., Lee, K.H.: Automated laser scanning system for reverse engineering and inspection. Int. J. Mach. Tools Manuf. 42(8), 889–897 (2002)

    Article  Google Scholar 

  46. Kovacic, I., Oberwinter, L., Muller, C., Achammer, C.: The BIM-sustain experiment - simulation of BIM-supported multi-disciplinary design. Vis. Eng. 1(1), 13 (2013)

    Article  Google Scholar 

  47. Hou, L., Wang, X., Bernold, L., Love, P.: Using animated augmented reality to cognitively guide assembly. J. Comput. Civil Eng. 27(5), 439–451 (2013)

    Article  Google Scholar 

  48. Geoforce: Geoforce: Hardware. http://www.geoforce.com/Technologies/Hardware/ (2013). Accessed 31 Dec 2013

  49. LaValle, S.M.: Motion planning: The essentials. IEEE Robot. Autom. Mag. 18(1), 79–89 (2011)

    Article  MathSciNet  Google Scholar 

  50. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, HL., Wang, J., Wang, X. et al. A Conceptual Framework of Quality-Assured Fabrication, Delivery and Installation Processes for Liquefied Natural Gas (LNG) Plant Construction. J Intell Robot Syst 79, 433–448 (2015). https://doi.org/10.1007/s10846-014-0123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0123-9

Keywords

Navigation