Skip to main content

Advertisement

Log in

Application of an evolutionary algorithm-based ensemble model to job-shop scheduling

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In this paper, a novel evolutionary algorithm is applied to tackle job-shop scheduling tasks in manufacturing environments. Specifically, a modified micro genetic algorithm (MmGA) is used as the building block to formulate an ensemble model to undertake multi-objective optimisation problems in job-shop scheduling. The MmGA ensemble is able to approximate the optimal solution under the Pareto optimality principle. To evaluate the effectiveness of the MmGA ensemble, a case study based on real requirements is conducted. The results positively indicate the effectiveness of the MmGA ensemble in undertaking job-shop scheduling problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

[adopted from Coello and Pulido (2005)]

Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abu-Lebdeh, G., & Benekohal, R. F. (1999). Convergence variability and population sizing in micro-genetic algorithms. Computer-Aided Civil and Infrastructure Engineering, 14(5), 321–334.

    Article  Google Scholar 

  • Amirian, H., & Sahraeian, R. (2015). Augmented \(\epsilon \)-constraint method in multi-objective flowshop problem with past sequence set-up times and a modified learning effect. International Journal of Production Research, 53(19), 5962–5976.

    Article  Google Scholar 

  • Archimede, B., Letouzey, A., Memon, M., & Xu, J. (2014). Towards a distributed multi-agent framework for shared resources scheduling. Journal of Intelligent Manufacturing, 25(5), 1077–1087.

    Article  Google Scholar 

  • Bäck, T., Hammel, U., & Schwefel, H. P. (1997). Evolutionary computation: Comments on the history and current state. IEEE Transactions on Evolutionary Computation, 1(1), 3–17.

    Article  Google Scholar 

  • Bäck, T., & Schwefel, H. P. (1993). An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation, 1(1), 1–23.

    Article  Google Scholar 

  • Besnard, J., Ruda, G. F., Setola, V., Abecassis, K., Rodriguiz, R. M., Huang, X. P., et al. (2012). Automated design of ligands to polypharmacological profiles. Nature, 492(7428), 215–220.

    Article  Google Scholar 

  • Capón-García, E., Bojarski, A. D., Espuña, A., & Puigjaner, L. (2013). Multiobjective evolutionary optimization of batch process scheduling under environmental and economic concerns. AIChE Journal, 59(2), 429–444.

    Article  Google Scholar 

  • Çaliş, B., & Bulkan, S. (2013). A research survey: Review of AI solution strategies of job shop scheduling problem. Journal of Intelligent Manufacturing, 26(5), 961–973.

    Article  Google Scholar 

  • Chakaravarthy, G., Marimuthu, S., Ponnambalam, S., & Kanagaraj, G. (2014). Improved sheep flock heredity algorithm and artificial bee colony algorithm for scheduling m-machine flow shops lot streaming with equal size sub-lot problems. International Journal of Production Research, 52(5), 1509–1527.

    Article  Google Scholar 

  • Chen, S. H., Chang, P. C., Cheng, T., & Zhang, Q. (2012). A self-guided genetic algorithm for permutation flowshop scheduling problems. Computers & Operations Research, 39(7), 1450–1457.

    Article  Google Scholar 

  • Chen, S. H., & Chen, M. C. (2013). Addressing the advantages of using ensemble probabilistic models in estimation of distribution algorithms for scheduling problems. International Journal of Production Economics, 141(1), 24–33.

    Article  Google Scholar 

  • Chen, Y. (2011). Fuzzy skyhook surface control using micro-genetic algorithm for vehicle suspension ride comfort. In M. Kppen, G. Schaefer, & A. Abraham (Eds.), Intelligent computational optimization in engineering, studies in computational intelligence (Vol. 366, pp. 357–394). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Chiang, T. C., & Lin, H. J. (2013). A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling. International Journal of Production Economics, 141(1), 87–98.

    Article  Google Scholar 

  • Chou, Y. C., Cao, H., & Cheng, H. H. (2013). A bio-inspired mobile agent-based integrated system for flexible autonomic job shop scheduling. Journal of Manufacturing Systems, 32(4), 752–763.

    Article  Google Scholar 

  • Coello, C. A. C. (2006). Evolutionary multi-objective optimization: A historical view of the field. IEEE Computational Intelligence Magazine, 1(1), 28–36.

    Article  Google Scholar 

  • Coello, C. A. C., Lamont, G. B., & Van Veldhuisen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems. Genetic and evolutionary computation series (2nd ed.). London: Springer.

    Google Scholar 

  • Coello, C. A. C., & Pulido, G. (2005). Multiobjective structural optimization using a microgenetic algorithm. Structural and Multidisciplinary Optimization, 30, 388–403.

    Article  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Deng, W., Li, W., Cai, X., Bulou, A., & Wang, Q. A. (2012). Universal scaling in sports ranking. New Journal of Physics, 14(9), 093038.

    Article  Google Scholar 

  • Durillo, J. J., & Nebro, A. J. (2011). jMetal: A java framework for multi-objective optimization. Advances in Engineering Software, 42(10), 760–771.

    Article  Google Scholar 

  • Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Gao, K. Z., Suganthan, P. N., Pan, Q. K., Chua, T. J., Cai, T. X., & Chong, C. S. (2014). Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives. Journal of Intelligent Manufacturing, 27(2), 363–374.

    Article  Google Scholar 

  • Gen, M., & Lin, L. (2014). Multiobjective evolutionary algorithm for manufacturing scheduling problems: State-of-the-art survey. Journal of Intelligent Manufacturing, 25(5), 849–866.

    Article  Google Scholar 

  • Geyik, F., & Cedimoglu, I. (2004). The strategies and parameters of tabu search for job-shop scheduling. Journal of Intelligent Manufacturing, 15(4), 439–448.

    Article  Google Scholar 

  • Gneiting, T., & Raftery, A. E. (2005). Weather forecasting with ensemble methods. Science, 310(5746), 248–249.

    Article  Google Scholar 

  • Gökdağ, H., & Yıldız, A. R. (2012). Structural damage detection using modal parameters and particle swarm optimization. Materials Testing, 54(6), 416–420.

    Article  Google Scholar 

  • Goldberg, D. E. (1989). Sizing populations for serial and parallel genetic algorithms. In Proceedings of the third international conference on genetic algorithms (pp. 70–79). San Francisco, CA: Morgan Kaufmann Publishers Inc.

  • Hanoun, S., & Nahavandi, S. (2012). A greedy heuristic and simulated annealing approach for a bicriteria flowshop scheduling problem with precedence constraints—A practical manufacturing case. The International Journal of Advanced Manufacturing Technology, 60(9–12), 1087–1098.

    Article  Google Scholar 

  • Hanoun, S., Nahavandi, S., Creighton, D., & Kull, H. (2012). Solving a multiobjective job shop scheduling problem using pareto archived cuckoo search. In IEEE 17th conference on emerging technologies factory automation, 2012 (ETFA 2012) (pp. 1–8).

  • Hanoun, S., Nahavandi, S., & Kull, H. (2011). Pareto archived simulated annealing for single machine job shop scheduling with multiple objectives. In The sixth international multi-conference on computing in the global information technology (ICCGI 2011) (pp. 99–104). Luxembourg

  • Inker, L. A., Schmid, C. H., Tighiouart, H., Eckfeldt, J. H., Feldman, H. I., Greene, T., et al. (2012). Estimating glomerular filtration rate from serum creatinine and cystatin C. New England Journal of Medicine, 367(1), 20–29.

    Article  Google Scholar 

  • Karthikeyan, S., Asokan, P., & Nickolas, S. (2014). A hybrid discrete firefly algorithm for multi-objective flexible job shop scheduling problem with limited resource constraints. The International Journal of Advanced Manufacturing Technology, 72(9–12), 1567–1579.

    Article  Google Scholar 

  • Khalili, M., & Naderi, B. (2015). A bi-objective imperialist competitive algorithm for no-wait flexible flow lines with sequence dependent setup times. The International Journal of Advanced Manufacturing Technology, 76(1–4), 461–469.

    Article  Google Scholar 

  • Kiani, M., & Yıldız, A. R. (2015). A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization. Archives of Computational Methods in Engineering. doi:10.1007/s11831-015-9155-y.

  • Li, D., Das, S., Pahwa, A., & Deb, K. (2013). A multi-objective evolutionary approach for generator scheduling. Expert Systems with Applications, 40(18), 7647–7655.

    Article  Google Scholar 

  • Lounkine, E., Keiser, M. J., Whitebread, S., Mikhailov, D., Hamon, J., Jenkins, J. L., et al. (2012). Large-scale prediction and testing of drug activity on side-effect targets. Nature, 486(7403), 361–367.

    Article  Google Scholar 

  • McWilliams, A., Tammemagi, M. C., Mayo, J. R., Roberts, H., Liu, G., Soghrati, K., et al. (2013). Probability of cancer in pulmonary nodules detected on first screening CT. The New England Journal of Medicine, 369(10), 910–919.

    Article  Google Scholar 

  • Mendoza, J., Lopez, M., Coello, C. A. C., & Lopez, E. (2009). Microgenetic multiobjective reconfiguration algorithm considering power losses and reliability indices for medium voltage distribution network. IET Generation, Transmission & Distribution, 3(9), 825–840.

    Article  Google Scholar 

  • Mendoza, J., Morales, D., Lopez, R., Lopez, E., Vannier, J. C., & Coello, C. A. C. (2007). Multiobjective location of automatic voltage regulators in a radial distribution network using a micro genetic algorithm. IEEE Transactions on Power Systems, 22(1), 404–412.

    Article  Google Scholar 

  • Nagar, A., Haddock, J., & Heragu, S. (1995). Multiple and bicriteria scheduling: A literature survey. European Journal of Operational Research, 81(1), 88–104.

    Article  Google Scholar 

  • Nebro, A., Alba, E., & Luna, F. (2007). Multi-objective optimization using grid computing. Soft Computing, 11(6), 531–540.

    Article  Google Scholar 

  • Nebro, A. J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J. J., & Beham, A. (2008). AbYSS: Adapting scatter search to multiobjective optimization. IEEE Transactions on Evolutionary Computation, 12(4), 439–457.

    Article  Google Scholar 

  • Nguyen, S., Zhang, M., Johnston, M., & Tan, K. C. (2013). A computational study of representations in genetic programming to evolve dispatching rules for the job shop scheduling problem. IEEE Transactions on Evolutionary Computation, 17(5), 621–639.

    Article  Google Scholar 

  • Öztürk, N., Yıldız, A. R., Kaya, N., & Öztürk, F. (2006). Neuro-genetic design optimization framework to support the integrated robust design optimization process in CE. Concurrent Engineering, 14(1), 5–17.

    Article  Google Scholar 

  • Panneerselvam, R. (2006). Simple heuristic to minimize total tardiness in a single machine scheduling problem. The International Journal of Advanced Manufacturing Technology, 30(7), 722–726.

    Article  Google Scholar 

  • Pareto, V. (1971). Manual of political economy (A. S. Schwier, Trans.). New York: Augustus M. Kelley Publishers.

  • Prot, D., Bellenguez-Morineau, O., & Lahlou, C. (2013). New complexity results for parallel identical machine scheduling problems with preemption, release dates and regular criteria. European Journal of Operational Research, 231(2), 282–287.

    Article  Google Scholar 

  • Qiu, X., & Lau, H. Y. (2014). An ais-based hybrid algorithm for static job shop scheduling problem. Journal of Intelligent Manufacturing, 25(3), 489–503.

    Article  Google Scholar 

  • Rohaninejad, M., Kheirkhah, A., Fattahi, P., & Vahedi-Nouri, B. (2015). A hybrid multi-objective genetic algorithm based on the electre method for a capacitated flexible job shop scheduling problem. The International Journal of Advanced Manufacturing Technology, 77(1–4), 51–66.

    Article  Google Scholar 

  • Sapp, B., Weiss, D., & Taskar, B. (2011). Parsing human motion with stretchable models. In IEEE conference on computer vision and pattern recognition, 2011 (CVPR 2011) (pp. 1281–1288). Providence.

  • Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., & Sauer, U. (2012). Multidimensional optimality of microbial metabolism. Science, 336(6081), 601–604.

    Article  Google Scholar 

  • Sen, T., Raiszadeh, F. M. E., & Dileepan, P. (1988). A branch-and-bound approach to the bicriterion scheduling problem involving total flowtime and range of lateness. Management Science, 34(2), 254–260.

    Article  Google Scholar 

  • Shahsavari-Pour, N., & Ghasemishabankareh, B. (2013). A novel hybrid meta-heuristic algorithm for solving multi objective flexible job shop scheduling. Journal of Manufacturing Systems, 32(4), 771–780.

    Article  Google Scholar 

  • Shoval, O., Sheftel, H., Shinar, G., Hart, Y., Ramote, O., Mayo, A., et al. (2012). Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space. Science, 336(6085), 1157–1160.

    Article  Google Scholar 

  • Sridhar, J., & Rajendran, C. (1996). Scheduling in flowshop and cellular manufacturing systems with multiple objectives—A genetic algorithmic approach. Production Planning & Control, 7(4), 374–382.

    Article  Google Scholar 

  • Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2, 221–248.

    Article  Google Scholar 

  • Tan, C. J., Lim, C. P., & Cheah, Y. N. (2013). A modified micro genetic algorithm for undertaking multi-objective optimization problems. Journal of Intelligent and Fuzzy Systems, 24(3), 483–495.

    Article  Google Scholar 

  • Tan, C. J., Lim, C. P., & Cheah, Y. N. (2014). A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models. Neurocomputing, 125, 217–228.

    Article  Google Scholar 

  • Tan, C. J., Lim, C. P., Cheah, Y. N., & Tan, S. C. (2013). Classification and optimization of product review information using soft computing models. In International symposium on affective engineering, 2013 (ISAE 2013) (pp. 115–120). Kitakyushu: Japan Society of Kansei Engineering.

  • Tan, C. J., Samer, H., Lim, C. P., Creighton, D., & Nahavandi, S. (2015). A multi-objective evolutionary algorithm-based decision support system: A case study on job-shop scheduling in manufacturing. In: 2015 9th Annual IEEE international systems conference (SysCon) (pp. 170–174).

  • Tian, J., Li, M., & Chen, F. (2010). Dual-population based coevolutionary algorithm for designing RBFNN with feature selection. Expert Systems with Applications, 37(10), 6904–6918.

    Article  Google Scholar 

  • Tiwari, A., Chang, P. C., Tiwari, M., & Kollanoor, N. J. (2015). A pareto block-based estimation and distribution algorithm for multi-objective permutation flow shop scheduling problem. International Journal of Production Research, 53(3), 793–834.

    Article  Google Scholar 

  • Tsai, M. Y. (2015). Variable selection in bayesian generalized linear-mixed models: An illustration using candidate gene case-control association studies. Biometrical Journal, 57(2), 234–253.

    Article  Google Scholar 

  • Wassenhove, L. N. V., & Gelders, L. F. (1980). Solving a bicriterion scheduling problem. European Journal of Operational Research, 4(1), 42–48.

    Article  Google Scholar 

  • Wassenhove, L. V., & Gelders, L. (1978). Four solution techniques for a general one machine scheduling problem: A comparative study. European Journal of Operational Research, 2(4), 281–290.

    Article  Google Scholar 

  • Wilson, D. T., Hawe, G. I., Coates, G., & Crouch, R. S. (2013). A multi-objective combinatorial model of casualty processing in major incident response. European Journal of Operational Research, 230(3), 643–655.

    Article  Google Scholar 

  • Wu, W. H., Wu, W. H., Chen, J. C., Lin, W. C., Wu, J., & Wu, C. C. (2015). A heuristic-based genetic algorithm for the two-machine flowshop scheduling with learning consideration. Journal of Manufacturing Systems, 35, 223–233.

    Article  Google Scholar 

  • Xiong, J., Xing, L., & Chen, Y. (2013). Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns. International Journal of Production Economics, 141(1), 112–126.

    Article  Google Scholar 

  • Yıldız, A. R. (2008). Optimal structural design of vehicle components using topology design and optimization. Materials Testing, 50(4), 224–228.

    Article  Google Scholar 

  • Yıldız, A. R. (2013). Comparison of evolutionary-based optimization algorithms for structural design optimization. Engineering Applications of Artificial Intelligence, 26(1), 327–333. doi:10.1016/j.engappai.2012.05.014.

  • Yıldız, A. R., Kaya, N., Öztürk, F., & Alankus, O. (2004). Optimal design of vehicle components using topology design and optimisation. International Journal of Vehicle Design, 34(4), 387–398.

    Article  Google Scholar 

  • Yıldız, A. R., Kurtuluş, E., Demirci, E., Yıldız, B. S., & Karagöz, S. (2016). Optimization of thin-wall structures using hybrid gravitational search and Nelder–Mead algorithm. Materials Testing, 58(1), 75–78.

    Article  Google Scholar 

  • Yıldız, A. R., Öztürk, N., Kaya, N., & Öztürk, F. (2003). Integrated optimal topology design and shape optimization using neural networks. Structural and Multidisciplinary Optimization, 25(4), 251–260. doi:10.1007/s00158-003-0300-0.

    Article  Google Scholar 

  • Yıldız, B. S., Lekesiz, H., & Yıldız, A. R. (2016). Structural design of vehicle components using gravitational search and charged system search algorithms. Materials Testing, 58(1), 79–81.

    Article  Google Scholar 

  • Zhang, G., Shao, X., Li, P., & Gao, L. (2009). An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem. Computers and Industrial Engineering, 56(4), 1309–1318.

    Article  Google Scholar 

  • Zhang, J., Yang, J., & Zhou, Y. (2016). Robust scheduling for multi-objective flexible job-shop problems with flexible workdays. Engineering Optimization. doi:10.1080/0305215X.2016.1145216.

  • Zhang, Q., Liu, W., Tsang, E., & Virginas, B. (2010). Expensive multiobjective optimization by MOEA/D with gaussian process model. IEEE Transactions on Evolutionary Computation, 14(3), 456–474.

    Article  Google Scholar 

  • Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., & da Fonseca, V. (2003). Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117–132.

    Article  Google Scholar 

  • Zoubir, A., & Boashash, B. (1998). The bootstrap and its application in signal processing. IEEE Signal Processing Magazine, 15(1), 56–76.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of Collaborative Research in Engineering, Science and Technology (CREST) (Grant No. P05C2-14) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee Peng Lim.

Additional information

This research is supported by Collaborative Research in Engineering, Science & Technology (CREST) Grant P05C2-14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C.J., Neoh, S.C., Lim, C.P. et al. Application of an evolutionary algorithm-based ensemble model to job-shop scheduling. J Intell Manuf 30, 879–890 (2019). https://doi.org/10.1007/s10845-016-1291-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-016-1291-1

Keywords

Navigation