Skip to main content
Log in

Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In this paper, a hybrid online learning model that combines the fuzzy min–max (FMM) neural network and the Classification and Regression Tree (CART) for motor fault detection and diagnosis tasks is described. The hybrid model, known as FMM-CART, incorporates the advantages of both FMM and CART for undertaking data classification (with FMM) and rule extraction (with CART) problems. In particular, the CART model is enhanced with an importance predictor-based feature selection measure. To evaluate the effectiveness of the proposed online FMM-CART model, a series of experiments using publicly available data sets containing motor bearing faults is first conducted. The results (primarily prediction accuracy and model complexity) are analyzed and compared with those reported in the literature. Then, an experimental study on detecting imbalanced voltage supply of an induction motor using a laboratory-scale test rig is performed. In addition to producing accurate results, a set of rules in the form of a decision tree is extracted from FMM-CART to provide explanations for its predictions. The results positively demonstrate the usefulness of FMM-CART with online learning capabilities in tackling real-world motor fault detection and diagnosis tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ARTMAP:

Adaptive resonance theory mapping

CART:

Classification and regression trees

CWRU:

Case Western Reserve University

FFT:

Fast Fourier transform

FMM:

Fuzzy min–max

ID3:

Iterative dichotomiser 3

LM:

Levenberg–Marquardt

MCSA:

Motor current signature analysis

MLP:

Multi-layered perceptron

NEMA:

National Electrical Manufacturers Association

PSD:

Power spectral density

RSH:

Rotor slot harmonics

References

  • Almeida, A. T. (2006). Energy using product (EuP) directive preparatory study, lot 11: motors, analysis of existing technical and market information. DG TREN, Brussels.

  • Aydın, İ., Karaköse, M., & Akın, E. (2012). An adaptive artificial immune system for fault classification. Journal of Intelligent Manufacturing, 23(5), 1489–1499.

    Article  Google Scholar 

  • Aydın, İ., Karaköse, M., & Akın, E. (2013). Combined intelligent methods based on wireless sensor networks for condition monitoring and fault diagnosis. Journal of Intelligent Manufacturing. doi:10.1007/s10845-013-0829-8.

  • Bacha, K., Salem, S. B., & Chaari, A. (2012). An improved combination of Hilbert and Park transforms for fault detection and identification in three-phase induction motors. International Journal of Electrical Power & Energy Systems, 43(1), 1006–1016.

    Article  Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Belmont, CA: Chapman and Hall.

    Google Scholar 

  • Brotherton, T., Chadderdon, G., & Grabill, P. (1999). Automated rule extraction for engine vibration analysis. Proceedings Aerospace Conference, 3, 29–39.

    Google Scholar 

  • Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap. New York: Chapman and Hall.

    Book  Google Scholar 

  • Floreano, D., & Mattiussi, C. (2008). Bio-inspired artificial intellgience: Theories, methods, and technologies. Cambridge: The MIT Press.

    Google Scholar 

  • Han J., Kamber M., & Pei J. (2012). Data mining: Concepts and techniques (3rd ed.). MA, USA: Morgan Kaufmann.

  • Hurst, K. D., & Habetler, T. G. (1997). A comparison of spectrum estimation techniques for sensorless speed detection in induction machines. IEEE Transactions on Industry Applications, 33(4), 898–905.

    Article  Google Scholar 

  • Jaber K., Abdullah R., & Rashid N. A. (2010). Indexing protein sequence/structure databases using decision tree: A preliminary study. In International symposium on information technology (pp. 844–849).

  • Karuppanan, P., & Mahapatra, K. K. (2014). Active harmonic current compensation to enhance power quality. International Journal of Electrical Power & Energy Systems, 62, 144–151.

    Article  Google Scholar 

  • Loparo K. A. (2003). Bearings vibration data set, Case Western Reserve University. http://csegroups.case.edu/bearingdatacenter/pages/download-data-file

  • Mikami, H., Ide, K., Takahashi, M., & Kajiwara, K. (1999). Dynamic harmonic field analysis of an inverter-fed induction motor for estimating harmonic secondary current and electromagnetic force. IEEE Transactions on Energy Conversion, 14(3), 464–470.

    Article  Google Scholar 

  • Mortada, M. A., Yacout, S., & Lakis, A. (2013). Fault diagnosis in power transformers using multi-class logical analysis of data. Journal of Intelligent Manufacturing. doi:10.1007/s10845-013-0750-1.

  • Nandi, S., & Toliyat, H. A. (2002). Novel frequency-domain-based technique to detect stator interturn faults in induction machines using stator-induced voltages after switch-off. IEEE Transactions on Industry Applications, 38(1), 101–109.

    Article  Google Scholar 

  • NEMA, Standards Publication MG 1–2009: Motors and generators. National Electrical Manufacturers Association, Virgina.

  • Ozawa, S., Pang, S., & Kasabov, N. (2008). Incremental learning of chunk data for online pattern classification systems. IEEE Transactions on Neural Networks, 19(6), 1061–1074.

    Article  Google Scholar 

  • Pathak, A. N., Sehgal, M., & Christopher, D. (2011). A study on fraud detection based on data mining using decision tree. International Journal of Computer Science Issues, 8(3), 258–261.

    Google Scholar 

  • Pineda-Sanchez, M., Riera-Guasp, M., Perez-Cruz, J., & Puche-Panadero, R. (2013). Transient motor current signature analysis via modulus of the continuous complex wavelet: A pattern approach. Energy Conversion & Management, 73, 26–36.

    Article  Google Scholar 

  • Pires, V. F., Kadivonga, M., Martins, J. F., & Pires, A. J. (2013). Motor square current signature analysis for induction motor rotor diagnosis. Measurement, 46(2), 942–948.

    Article  Google Scholar 

  • Proakis, J. G., & Manolakis, D. K. (1995). Digital signal processing (3rd ed.). New Jersey: Prentice-Hall.

    Google Scholar 

  • Quteishat, A., Lim, C. P., & Tan, K. S. (2010). A modified fuzzy min–max neural network with a genetic-algorithm-based rule extractor for pattern classification. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 40(3), 641–650.

    Article  Google Scholar 

  • Rickli, J. L., Camelio, J. A., Dreyer, J. T., & Pandit, S. M. (2011). Fault detection and prognosis of assembly locating systems using piezoelectric transducers. Journal of Intelligent Manufacturing, 22(6), 909–918.

    Article  Google Scholar 

  • Samaga, R. B. L., & Vittal, K. P. (2012). Comprehensive study of mixed eccentricity fault diagnosis in induction motors using signature analysis. International Journal of Electrical Power & Energy Systems, 35(1), 180–185.

    Article  Google Scholar 

  • Seera, M., & Lim, C. P. (2014). Online motor fault detection and diagnosis using a hybrid FMM-CART model. IEEE Transactions on Neural Networks and Learning Systems, 25(4), 806–812.

    Article  Google Scholar 

  • Sharifi, R., & Ebrahimi, M. (2011). Detection of stator winding faults in induction motors using three-phase current monitoring. ISA Transactions, 50(1), 14–20.

    Article  Google Scholar 

  • Simpson, P. K. (1992). Fuzzy min–max neural networks—part 1: Classification. IEEE Transactions on Neural Networks, 3(5), 776–786.

    Article  Google Scholar 

  • Singh, G. K., & Al Kazzaz, S. A. S. (2008). Development of an intelligent diagnostic system for induction machine health monitoring. IEEE Systems Journal, 2(2), 273–288.

    Article  Google Scholar 

  • The MathWorks Inc. (2011a). Communications System Toolbox\(^{\rm TM}\) User’s Guide. Natick, MA.

  • The MathWorks Inc. (2011b). Statistics Toolbox\(^{\rm TM}\) User’s Guide. Natick, MA.

  • The MathWorks Inc. (2011c). Neural Network Toolbox\(^{\rm TM}\) User’s Guide. Natick, MA.

  • Tran, V. T., Yang, B. S., Oh, M. S., & Tan, A. C. C. (2009). Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference. Expert Systems with Applications, 36, 1840–1849.

    Article  Google Scholar 

  • U. S. Department of Energy. (2012). Energy Efficiency & Renewable Energy, Energy Tips: Motor Systems.

  • Wang, C. C., & Too, G. P. J. (2002). Rotating machine fault detection based on HOS and artificial neural networks. Journal of Intelligent Manufacturing, 13(4), 283–293.

    Article  Google Scholar 

  • Xu, Z., Xuan, J., Shi, T., Wu, B., & Hu, Y. (2009). A novel fault diagnosis method of bearing based on improved fuzzy ARTMAP and modified distance discriminant technique. Expert Systems with Applications, 36(9), 11801–11807.

  • Zhang, L., Xiong, G., Liu, H., Zou, H., & Guo, W. (2010). Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Systems with Applications, 37(8), 6077–6085.

  • Zhang, Z., Wang, Y., & Wang, K. (2013). Fault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural network. Journal of Intelligent Manufacturing, 24(6), 1213–1227.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported partially by RU014-2013 grant from University of Malaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjeevan Seera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seera, M., Lim, C.P. & Loo, C.K. Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning. J Intell Manuf 27, 1273–1285 (2016). https://doi.org/10.1007/s10845-014-0950-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-014-0950-3

Keywords

Navigation