Skip to main content
Log in

The spatial variation in ant species composition and functional groups across the Subantarctic-Patagonian transition zone

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

The role of ecotones in the maintenance of species diversity is rather controversial; they may represent either biodiversity hotspots with unique and rare forms, or be transitional areas that hold marginal populations of species. We analyse the taxonomic and functional composition of ant species assemblages across the Subantarctic-Patagonian transition to evaluate the role that transitional shrublands may play in the maintenance of the taxonomic and functional differentiation. We collected ants using 450 pitfall traps within a ~150 × 150 km area. Species were classified into functional groups in relation to stress and disturbance, and in foraging groups according to their foraging behavior. An indicator value for each species in each habitat was calculated. The steppes and the forests strongly differed in ant species and functional composition. Climatic effects combined with structural components of plant environment explained about 23–27 % of the variation in ant composition. The shrublands did not show a distinctive fauna, and show greater similarity in ant species composition and in the proportional occupancy of functional groups to the steppes than to the forests. They harbor neither rare nor indicator species, except for Lasiophanes valdiviensis, and thus this reinforces the idea that they are not a habitat source of species, but an area of encounter between two distinct forest- and steppe- ant faunas, where a high number of local distributional limits of ant species overlap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen AN (1983) Species diversity and temporal distribution of ants in the semi-arid mallee region of Northwestern Victoria. Austral Ecol 8:127–137

    Article  Google Scholar 

  • Andersen AN (2000) Global ecology of rainforest ants. Functional groups in relation to environmental stress and disturbance. In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution, Washington, pp 25–44

    Google Scholar 

  • Araújo MB (2002) Biodiversity hotspots and zones of ecological transition. Conserv Biol 16:1662–1663

    Article  Google Scholar 

  • Barros V, Cordón V, Moyano C, Méndez R, Forquera J, Pizzio O (1983) Cartas de precipitación de la zona oeste de las provincias de Río Negro y Neuquén. Internal Report. Facultad Ciencias de la Agricultura, Universidad Nacional del Comahue, Neuquén, Argentina

  • Bestelmeyer BT (1997) Stress-tolerance in some Chacoan dolichoderine ants: implications for community organization and distribution. J Arid Environ 35:297–310

    Article  Google Scholar 

  • Bestelmeyer BT, Schooley RL (1999) The ants of the southern Sonoran desert: community structure and the role of trees. Biodiv Conserv 8:643–657

    Article  Google Scholar 

  • Bestelmeyer BT, Wiens JA (2001) Local and regional scale responses of ant diversity to a semiarid biome transition. Ecography 24:381–392

    Article  Google Scholar 

  • Botes A, McGeoch MA, Robertson HG, van Niekerk A, Davids HP, Chown SL (2006) Ants, altitude and change in the Northern Cape floristic region. J Biogeogr 33:71–90

    Article  Google Scholar 

  • Boulton AM, Davies KF, Ward PS (2005) Species richness, abundance, and composition of ground-dwelling ants in northern California grasslands: role of plants, soil, and grazing. Environ Entomol 34:96–104

    Article  Google Scholar 

  • Brown Jr WL (2000) Diversity of ants. In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds.) Ants: standard methods for measuring and monitoring biodiversity, Smithsonian Institution, pp 45–79

  • Cabrera AL (1976) Regiones fitogeográficas de la República Argentina. Enciclopedia Argentina de Agricultura y Jardinería 2 (ed ACME). Buenos Aires

  • Clarke KR, Gorley RN (2001) PRIMER v5: user manual/tutorial. Primer-E, Plymouth

    Google Scholar 

  • Clarke KR, Green RH (1988) Statistical design and analysis for a “biological effects” study. Mar Ecol-Prog Ser 46:213–226

    Article  Google Scholar 

  • Cuezzo F, Claver S (2009) Two new species of the ant genus Pogonomyrmex (Hymenoptera: Formicidae) from Argentina. Rev Soc Entomol Arg 68:97–106

    Google Scholar 

  • Dangerfield J, Pik AJ, Britton D, Holmes A, Gillings M, Oliver I, Briscoe D, Beattie AJ (2003) Patterns of invertebrate biodiversity across a natural edge. Austral Ecol 28:227–236

    Article  Google Scholar 

  • Dauber J, Wolters V (2004) Edge effects on ant community structure and species richness in an agricultural landscape. Biodiv Conserv 13:901–915

    Article  Google Scholar 

  • Davidson DW (1977) Species diversity and community organization in desert seed-eating ants. Ecology 58:711–724

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Dunn RR, Agosti D, Andersen AN, Arnan X, Bruhl CA, Cerdá X, Ellison AM, Fisher BL, Fitzpatrick MC, Gibb H, Gotelli NJ, Gove AD, Guenard B, Janda M, Kaspari M, Laurent EJ, Lessard J-P, Longino JT, Majer JD, Menke SB, McGlynn TP, Parr CL, Philpott SM, Pfeiffer M, Retana J, Suarez AV, Vasconcelos HL, Weiser MD, Sanders NJ (2009a) Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecol Lett 12:324–333

    Article  PubMed  Google Scholar 

  • Dunn RR, Guénard B, Weiser MD, Sanders NJ (2009b) Geographic gradients. In: Lach L, Parr C, Abbot K (eds) Ant ecology. Oxford University Press, Oxford, pp 38–58

    Chapter  Google Scholar 

  • Ezcurra C, Brion C (2005) Plantas del Nahuel Huapi: Catálogo de la Flora Vascular del Parque Nacional Nahuel Huapi, Argentina Universidad Nacional del Comahue y Red Latinoamercana de Botánica, San Carlos de Bariloche

  • Fergnani P, Sackmann P, Cuezzo F (2008) Environmental determinants of the distribution and abundance of the ants, Lasiophanes picinus and L. valdiviensis, in Argentina. J Insect Sci 8:36

    Article  Google Scholar 

  • Fergnani P, Sackmann P, Ruggiero A (2010) Richness-environment relationships in epigaeic ants across the Subantarctic-Patagonian transition zone. Insect Conserv Diver 3:278–290

    Article  Google Scholar 

  • Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford

    Google Scholar 

  • Guo Q, Taper M, Schoenberger M, Brandle J (2005) Spatial-temporal population dynamics across species range: from centre to margin. Oikos 108:47–57

    Article  Google Scholar 

  • Heliölä J, Koivula M, Niemelä J (2001) Distribution of carabid beetles (Coleoptera, Carabidae) across a boreal forest–clearcut ecotone. Conserv Biol 15:370–377

    Article  Google Scholar 

  • Hill JG, Summerville KS, Brown RL (2008) Habitat associations of ant species (Hymenoptera: Formicidae) in a heterogeneous Mississippi landscape. Environ Entomol 37:453–463

    Article  PubMed  Google Scholar 

  • Hoffmann BD, Andersen AN (2003) Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral Ecol 28:444–464

    Article  Google Scholar 

  • Jobbágy EG, Sala OE, Paruelo JM (1995) Patterns and controls of primary production in the Patagonian steppe: a remote sensing approach. Ecology 83:307–319

    Google Scholar 

  • Kark S, van Rensburg BJ (2006) Ecotones: marginal or central areas of transition? Isr J Ecol Evol 52:29–53

    Article  Google Scholar 

  • Kark S, Allnutt TF, Levin N, Manne LL, Williams PH (2007) The role of transitional areas as avian biodiversity centres. Global Ecol Biogeogr 16:187–196

    Article  Google Scholar 

  • Kaspari M, Alonso L, O’Donnell S (2000) Three energy variables predict ant abundance at a geographical scale. Proc R Soc Lond B 267:485–489

    Article  CAS  Google Scholar 

  • Kemp SF, deShazo RD, Moffitt JE, Williams DF, Buhner WA (2000) Expanding habitat of the imported fire ant (Solenopsis invita): a public health concern. J Allergy Clin Inmun 105:683–691

    Article  CAS  Google Scholar 

  • Kotze DJ, Samways MJ (2001) No general edge effects for invertebrates at Afromontane forest/grassland ecotones. Biodiv Conserv 10:443–466

    Article  Google Scholar 

  • Kusnezov N (1949) Sobre la reproducción de las formas sexuales en “Solenopsis patagonica’’ Emery (Hymenoptera, Formicidae). Acta Zool Lilloana 8:281–290

    Google Scholar 

  • Kusnezov N (1951) Lasiophanes Emery en la Patagonia. Acta Zool Lilloana 12:89–100

    Google Scholar 

  • Kusnezov N (1952) Algunos datos sobre la dispersión geográfica de hormigas (Hymenoptera, Formicidae) en la República Argentina An Soc Cien Arg 153:230–242

    Google Scholar 

  • Kusnezov N (1953) Las hormigas de los parques nacionales de la Patagonia y los problemas relacionados. Anales del Museo Nahuel Huapi Perito Francisco P. Moreno, volume III. Administración de Parques Nacionales, Buenos Aires, Argentina

  • Kusnezov N (1959) La fauna de hormigas en el oeste de la Patagonia y Tierra del Fuego. Acta Zool Lilloana 17:321–401

    Google Scholar 

  • Kusnezov N (1978) Hormigas Argentinas: clave para su identificación. Edición preparada por R. Golbach. Fundación Miguel Lillo. Miscelánea. Tucumán, Argentina

  • Lassau SA, Hochuli DF (2004) Effects of habitat complexity on ant assemblages. Ecography 27:157–164

    Article  Google Scholar 

  • Lassau SA, Cassis G, Flemons PKJ, Wilkie L, Hochuli DF (2005) Using high-resolution multi-spectral imagery to estimate habitat complexity in open-canopy forests: can we predict ant community patterns? Ecography 28:495–504

    Article  Google Scholar 

  • Lattke JE (2003) Biogeografía de las hormigas neotropicales. In: Fernández F (ed) Introducción a las hormigas de la región Neotropical. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  • Mermoz M, Kitzberger T, Veblen TT (2005) Landscape influences on occurrence and spread of wildfires in Patagonian forests and shrublands. Ecology 86:2705–2715

    Article  Google Scholar 

  • Mezger D, Pfeiffer M (2011) Partitioning the impact of abiotic factors and spatial patterns on species richness and community structure of ground ant assemblages in four Bornean rainforests. Ecography 34:39–48

    Article  Google Scholar 

  • Morrone JJ (2002) Biogeographical regions under track and cladistic scrutiny. J Biogeogr 29:149–152

    Article  Google Scholar 

  • Morton SR, Davidson DW (1988) Comparative structure of harvester ant communities in arid Australia and North America. Ecol Monogr 58:19–38

    Article  Google Scholar 

  • Muff P, Kropf C, Frick H, Nentwig W, Schmidt Entling MH (2009) Co-existence of divergent communities at natural boundaries: spider (Arachnida: Araneae) diversity across an alpine timberline. Insect Conserv Div 2:36–44

    Article  Google Scholar 

  • Paruelo JM, Beltrán A, Jobbágy E, Sala OE, Golluscio RA (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Austral 8:85–102

    Google Scholar 

  • Peck SL, McQuaid B, Campbell CL (1998) Using ant species (Hymenoptera: Formicidae) as a biological indicator of agroecosystem condition. Env Entomol 27:1102–1110

    Google Scholar 

  • Pfeiffer M, Chimedregzen L, Kaman Ulykpan K (2003) Community organization and species richness of ants (Hymenoptera/Formicidae) in Mongolia along an ecological gradient from steppe to Gobi desert. J Biogeogr 30:1921–1935

    Article  Google Scholar 

  • Pfeiffer M, Cheng Tuck H, Chong Lay T (2008) Exploring arboreal ant community composition and co occurrence patterns in plantations of oil palm Elaeis guineensis in Borneo and Peninsular Malaysia. Ecography 31:21–32

    Article  Google Scholar 

  • Pinheiro ERS, Duarte LDS, Diehl E, Hartz SM (2010) Edge effects on epigeic ant assemblages in a grassland-forest mosaic in southern Brazil. Acta Oecol 36:365–371

    Article  Google Scholar 

  • Pirk GI, Casenave JL (2006) Diet and seed removal rates by the harvester ants Pogonomyrmex rastratus and Pogonomyrmex pronotalis in the central Monte desert, Argentina. Insect Soc 53:119–125

    Article  Google Scholar 

  • Pirk GI, di Pasquo F, Lopez de Casenave J (2009) Diet of two sympatric Pheidole spp. ants in the central Monte desert: implications for seed–granivore interactions. Insect Soc 56:277–283

    Article  Google Scholar 

  • Retana J, Cerdá X (2000) Patterns of diversity and composition of Mediterranean ground ant communities tracking spatial and temporal variability in the thermal environment. Oecologia 123:436–444

    Article  Google Scholar 

  • Ribas CR, Schoereder JH, Pic M, Soares SM (2003) Tree heterogeneity, resource availability, and larger scale processes regulating arboreal and species richness. Austral Ecol 28:305–314

    Article  Google Scholar 

  • Risser PG (1995) The status of science examining ecotones. Bioscience 45:318–325

    Article  Google Scholar 

  • Ruggiero A, Ezcurra C (2003) Regiones y transiciones biogeográficas: complementariedad de los análisis en biogeografía histórica y ecológica. In: Morrone JJ, Llorente J (eds) Una perspectiva latinoamericana de la biogeografía, Las Prensas de Ciencias, UNAM, Mexico, DF, pp 141–154

  • Ruggiero A, Sackmann P, Farji-Brener AG, Kun M (2009) Beetle abundance-environment relationships at the Subantarctic-Patagonian transition zone. Insect Conserv Div 2:81–92

    Article  Google Scholar 

  • Rusch V (1989) Determinación de las transiciones de estado en bosques de lenga (Nothofagus pumilio). Final report. Beca de Perfeccionamiento del CONICET

  • Sackmann P, Farji-Brener AG (2006) Effect of fire on ground beetles and ant assemblages along an environmental gradient in NW Patagonia: does habitat type matter? Ecoscience 13:360–371

    Article  Google Scholar 

  • Sanders NJ, Lessard JP, Dunn RR, Fitzpatrick MC (2007) Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecol Biogeogr 16:640–649

    Article  Google Scholar 

  • Schaffers AP, Raemakers IP, Sýkora KV, ter Braak CJF (2008) Arthropod assemblages are best predicted by plant species composition. Ecology 89:782–794

    Article  PubMed  Google Scholar 

  • Smith TB, Kark S, Schneider CJ, Wayne RK, Moritz C (2001) Biodiversity hotspots and beyond: the need for conserving environmental transitions. Trends Ecol Evol 16:431

    Article  Google Scholar 

  • Snelling RR, Hunt JH (1975) The ants of Chile (Hymenoptera: Formicidae). Rev Chil Entomol 9:63–129

    Google Scholar 

  • Spector S, Ayzama S (2003) Rapid turnover and edge effects in dung beetle assemblages (Scarabaeidae) at a Bolivian Neotropical Forest Savanna Ecotone1. Biotropica 35:394–404

    Google Scholar 

  • Speziale KL, Ruggiero A, Ezcurra C (2010) Plant species richness-environment relationships across the Subantarctic-Patagonian transition zone. J Biogeogr 37:449–464

    Article  Google Scholar 

  • StatXact-6 (2003) A statistical package for exact nonparametric inference. Cytel Software Corporation, Cambridge

    Google Scholar 

  • Steiner FM, Schlick-Steiner BC (2004) Edge effects on the diversity of ant assemblages in a xeric alluvial habitat in central Europe (Hymenoptera: Formicidae). Entomol Gen 27:49–56

    Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 4.5) Microcomputer Power, Ithaca

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • Theunis L, Gilbert M, Roisin Y, Leponce M (2005) Spatial structure of litter-dwelling ant distribution in a subtropical dry forest. Insect Soc 52:366–377

    Article  Google Scholar 

  • Tizón FR, Quirán EM (2009) Hormigas (Hymenoptera: Formicidae) del distrito fitogeográfico del Caldenal, Argentina. Rev Soc Entomol Arg 68:365–367

    Google Scholar 

  • Uno S, Cotton J, Philpott SM (2010) Diversity, abundance, and species composition of ants in urban green spaces. Urban Ecosyst 13:1–17

    Article  Google Scholar 

  • van Ingen LT, Campos RI, Andersen AN (2008) Ant community structure along an extended rain forest-savanna gradient in tropical Australia. J Trop Ecol 24:445–455

    Google Scholar 

  • van Rensburg BJ, Levin N, Kark S (2009) Spatial congruence between ecotones and range-restricted species: implications for conservation biogeography at the sub-continental scale. Div Dist 15:379–389

    Article  Google Scholar 

  • Vasconcelos HL (1990) Effects of litter collection by understory palms on the associated macroinvertebrate fauna in Central Amazonia. Pedobiologia 34:157–160

    Google Scholar 

  • Veblen TT, Kitzberger T, Raffaele E, Lorenz D (2003) Fire history and vegetation changes in northern Patagonia, Argentina. In: Veblen TT, Baker W, Montenegro G, Swetnam TW (eds) Fire and climatic change in temperate ecosystems of the western Americas. Springer, New York, pp 265–295

    Chapter  Google Scholar 

  • Verdú JR, Numa C, Hernández-Cuba O (2011) The influence of landscape structure on ants and dung beetles diversity in a Mediterranean savanna-Forest ecosystem. Ecol Indicat 11:831–839

    Article  Google Scholar 

  • Whitham TG, Martinsen GD, Floate KD, Dungey HS, Potts BM, Keim P (1999) Plant hybrid zones affect biodiversity: tools for a genetic-based understanding of community structure. Ecology 80:416–428

    Article  Google Scholar 

  • Williams PH, de Klerk HM, Crow TM (1999) Interpreting biogeographical boundaries among Afrotropical birds: spatial patterns in richness gradients and species replacement. J Biogeogr 26:459–474

    Article  Google Scholar 

Download references

Acknowledgments

We thank Alan N. Andersen, Alan Stewart and Lucas Garibaldi for valuable comments and suggestions that improved our work. This work is part of a wider project funded by Agencia/Foncyt (BID 1728/OC-AR-PICT No. 01-11826), the British Ecological Society (SEPG2243a), CONICET (PIP 2010-2012 IU 0084), and Universidad Nacional del Comahue. Millerón family assisted us in the field and laboratory. K. Speziale and C. Ezcurra made the taxonomic identifications of plants and estimated plant cover. Fabiana Cuezzo helped us with the taxonomic identifications of ants. Argentina National Park Administration gave us permission to collect ants in Nahuel Huapi and Lanin National Parks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Nilda Fergnani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 107 kb)

Supplementary material 2 (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fergnani, P.N., Sackmann, P. & Ruggiero, A. The spatial variation in ant species composition and functional groups across the Subantarctic-Patagonian transition zone. J Insect Conserv 17, 295–305 (2013). https://doi.org/10.1007/s10841-012-9510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-012-9510-3

Keywords

Navigation