Skip to main content
Log in

Electrochemical properties of TiO2 nanotube-carbon nanotube composites as anode material of lithium-ion batteries

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

For use as an anode material in lithium batteries, composites consisting of TiO2 nanotubes (TNTs) and carbon nanotubes (CNTs) are prepared by combining hydrothermal reaction of rutile TiO2 bulk particles, blending with different amounts (0–30 wt.%) of CNTs, ball-milling, and subsequent heat treatment at 300 °C. Crystalline property analysis and morphology observation of the prepared TNT-CNT powders prove that at low CNT content the composites are consisted of dominant phase of aggregated anatase TNTs. The TNT aggregates are relaxed with increased CNT content to form crosslinked networks surrounding the amorphous CNT phases that act as a dispersing matrix. As a result, the TNT-CNT composite anode with CNT (30 wt.%) is superior for application in lithium-ion batteries because it shows a saturated discharge capacity after about 20th cycle, good high-rate capability, and the lowest interfacial resistance of 1.7–2 Ω cm−2. The superior anode properties of TNT-CNT composite with high content of CNT are mainly due to CNT’s functions to enhance electron transfer and to facilitate Li+ diffusion by dispersing the TNT agglomeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S.-E. Lindquist, J. Phys. Chem. B 101, 7717 (1997)

    Article  Google Scholar 

  2. L. Kavan, M. Grätzel, J. Rathouský, A. Zukalb, J. Electrochem. Soc. 143, 394 (1996)

    Article  Google Scholar 

  3. R. van de Krol, A. Goossens, E.A. Meulenkamp, J. Electrochem. Soc. 146, 3150 (1999)

    Article  Google Scholar 

  4. M. Wagemaker, W.J.H. Borghols, F.M. Mulder, J. Am. Chem. Soc. 129, 4323 (2009)

    Article  Google Scholar 

  5. A.R. Armstrong, G. Armstrong, J. Canales, P.G. Bruce, Angew. Chem. Intern. Ed. 43, 2286 (2004)

    Article  Google Scholar 

  6. A.R. Armstrong, G. Armstrong, J. Canales, P.G. Bruce, J. Power Sources 146, 501 (2005)

    Article  Google Scholar 

  7. G. Armstrong, A.R. Armstrong, J. Canales, P.G. Bruce, Chem. Commun. 2454 (2005)

  8. S. Brutti, V. Gentili, H. Menard, B. Scrosati, P.G. Bruce, Adv. Energy Mater. 2, 322 (2012)

    Article  Google Scholar 

  9. M.G. Choi, Y.-G. Lee, S.-W. Song, K.M. Kim, Electrochim. Acta 55, 5975 (2010)

    Article  Google Scholar 

  10. M.G. Choi, Y.-G. Lee, S.-W. Song, K.M. Kim, J. Power Sources 195, 8289 (2010)

    Article  Google Scholar 

  11. K.-Y. Kang, Y.-G. Lee, S. Kim, S.R. Seo, J.-C. Kim, K.M. Kim, Mater. Chem. Phys. 137, 169 (2012)

    Article  Google Scholar 

  12. K.M. Kim, K.-Y. Kang, S. Kim, Y.-G. Lee, Curr. Appl. Phys. 12, 1199 (2012)

    Article  Google Scholar 

  13. G. Williams, B. Seger, P.V. Kamat, ACS Nano 2, 1487 (2008)

    Article  Google Scholar 

  14. D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L.V. Saraf, J. Zhang, I.A. Aksay, J. Liu, ACS Nano 3, 907 (2009)

    Article  Google Scholar 

  15. S.K. Das, S. Darmakolla, A.J. Bhattacharyya, J. Mater. Chem. 20, 1600 (2010)

    Article  Google Scholar 

  16. F.-F. Cao, X.-L. Wu, S. Xin, Y.-G. Guo, L.-J. Wan, J. Phys. Chem. C 114, 10308 (2010)

    Article  Google Scholar 

  17. Y. Qiu, K. Yan, S. Yang, L. Jin, H. Deng, W. Li, ACS Nano 4, 6515 (2010)

    Article  Google Scholar 

  18. P. Zhu, Y. Wu, M.V. Reddy, A.S. Nair, B.V.R. Chowdari, S. Ramakrishna, RSC Adv. 2, 531 (2012)

    Article  Google Scholar 

  19. D. Cai, P. Lian, X. Zhu, S. Liang, W. Yang, H. Wang, Electrochim. Acta 74, 65 (2012)

    Article  Google Scholar 

  20. E. Ventosa, P. Chen, W. Schuhmann, W. Xia, Electrochem. Commun. 25, 132 (2012)

    Article  Google Scholar 

  21. N. Bouazza, M. Ouzzine, M.A. Lillo-Ródenas, D. Eder, A. Linares-Solano, Appl. Catal. B: Environ. 92, 377 (2009)

    Article  Google Scholar 

  22. P. Zhang, J. Qiu, Z. Zheng, G. Liu, M. Ling, W. Martens, H. Wang, H. Zhao, S. Zhang, Electrochim. Acta 104, 41 (2013)

    Article  Google Scholar 

  23. S. Xin, Y.-G. Guo, L.-J. Wan, Acc. Chem. Res. 45, 1759 (2012)

    Article  Google Scholar 

  24. F. Gao, J. Qu, M. Yao, Mater. Lett. 82, 184 (2012)

    Article  Google Scholar 

  25. M.A. Reddy, M.S. Kishore, V. Pralong, V. Caignaert, U.V. Varadaraju, B. Raveau, Electrochem. Commun. 8, 299 (2006)

    Article  Google Scholar 

  26. C. Jiang, I. Honma, T. Kudo, H. Zhou, Electrochem. Solid-State Lett. 10, A127 (2007)

    Article  Google Scholar 

  27. M.D. Levi, D. Aurbach, J. Phys. Chem. B 101, 4630 (1997)

    Article  Google Scholar 

  28. H. Wang, T. Abe, S. Maruyama, Y. Iriyama, Z. Ogumi, K. Yoshikawa, Adv. Mater. 17, 2857 (2005)

    Article  Google Scholar 

  29. M. Zukalová, M. Kalbáč, L. Kavan, I. Exnar, M. Grätzel, Chem. Mater. 17, 1248 (2005)

    Article  Google Scholar 

  30. H. Zhang, G.R. Li, L.P. An, T.Y. Yan, X.P. Gao, H.Y. Zhu, J. Phys. Chem. C 111, 6143 (2007)

    Article  Google Scholar 

  31. S.K. Das, M. Patel, A.J. Bhattacharyya, ACS Appl. Mater. Interf. 2, 2091 (2010)

    Article  Google Scholar 

  32. W.J.H. Borghols, D. Lützenkirchen-Hecht, U. Haake, W. Chan, U. Lafont, E.M. Kelder, E.R.H. van Eck, A.P.M. Kentgens, F.M. Mulder, M. Wagemaker, J. Electrochem. Soc. 157, A582 (2010)

    Article  Google Scholar 

  33. C. Ho, I.D. Raistrick, R.A. Huggins, J. Electrochem. Soc. 127, 343 (1980)

    Article  Google Scholar 

  34. K.M. Shaju, G.V.S. Rao, B.V.R. Chowdari, J. Electrochem. Soc. 151, A1324 (2004)

    Article  Google Scholar 

  35. J. Zhang, P. He, Y. Xia, J. Electroanal. Chem. 624, 161 (2008)

    Article  Google Scholar 

  36. Y. Wang, H. Lin, K. Wang, H. Eiji, Y. Wang, H. Zhou, J. Mater. Chem. 19, 6789 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Converging Research Center Program through the Korean Ministry of Science, ICT and Future Planning (2013 K000218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Man Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, KY., Shin, D.O., Lee, YG. et al. Electrochemical properties of TiO2 nanotube-carbon nanotube composites as anode material of lithium-ion batteries. J Electroceram 32, 246–254 (2014). https://doi.org/10.1007/s10832-013-9882-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-013-9882-0

Keywords

Navigation