Skip to main content
Log in

Numerical analysis of transmission coefficient, LDOS, and DOS in superlattice nanostructures of cubic \(\hbox {Al}_{x}\hbox {Ga}_{1-x}\hbox {N/GaN}\) resonant tunneling MODFETs

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Numerical analysis of the transmission coefficient, local density of states, and density of states in superlattice nanostructures of cubic \(\hbox {Al}_{x}\hbox {Ga}_{1-x}\hbox {N/GaN}\) resonant tunneling modulation-doped field-effect transistors (MODFETs) using \(\hbox {next}{} \mathbf{nano}^{3}\) software and the contact block reduction method is presented. This method is a variant of non-equilibrium Green’s function formalism, which has been integrated into the \(\hbox {next}\mathbf{nano}^{3}\) software package. Using this formalism in order to model any quantum devices and estimate their charge profiles by computing transmission coefficient, local density of states (LDOS) and density of states (DOS). This formalism can also be used to describe the quantum transport limit in ballistic devices very efficiently. In particular, we investigated the influences of the aluminum mole fraction and the thickness and width of the cubic \(\hbox {Al}_{x}\hbox {Ga}_{1-x}\hbox {N}\) on the transmission coefficient. The results of this work show that, for narrow width of 5 nm and low Al mole fraction of \(x = 20\,\%\) of barrier layers, cubic \(\hbox {Al}_{x}\hbox {Ga}_{1-x}\hbox {N/GaN}\) superlattice nanostructures with very high density of states of 407 \(\hbox {eV}^{-1}\) at the resonance energy are preferred to achieve the maximum transmission coefficient. We also calculated the local density of states of superlattice nanostructures of cubic \(\hbox {Al}_{x}\hbox {Ga}_{1-x}\hbox {N/GaN}\) to resolve the apparent contradiction between the structure and manufacturability of new-generation resonant tunneling MODFET devices for terahertz and high-power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zado, A., Tschumak, E., Lischka, K., As, D.J.: Electrical characterization of an interface n-type conduction channel in cubic GaN/AlGaN heterostructures. Phys. Status Solidi C 7(1), 52–55 (2010)

    Article  Google Scholar 

  2. Wecker, T., Hörich, F., Feneberg, M., Goldhahn, R., Reuter, D., As, D.J.: Structural and optical properties of MBE-grown asymmetric cubic \(\text{ GaN/Al }_{x}\text{ Ga }_{1-x}\text{ N }\) double quantum wells. Phys. Status Solidi B 252(5), 873–878 (2015)

    Article  Google Scholar 

  3. Gangwani, P., Pandey, S., Haldar, S., Gupta, M., Gupta, R.S.: Polarization dependent analysis of AlGaN/GaN HEMT for high power applications. Solid-state Electron. 51(1), 130–135 (2007)

    Article  Google Scholar 

  4. Bouguenna, Driss, Boudghene Stambouli, A., Mekkakia Maaza, N., Zado, A., As, D.J.: Comparative study on performance of cubic AlGaN/GaN nanostructures MODFETs and MOS-MODFETs. Superlattices Microstruct. 62, 260–268 (2013)

    Article  Google Scholar 

  5. Eller, Brianna S., Yang, Jialing, Nemanich, Robert J.: Electronic surface and dielectric interface states on GaN and AlGaN. J. Vac. Sci. Technol. A 31(5), 1–29 (2013)

    Article  Google Scholar 

  6. Rajan, S., Waltereit, P., Poblenz, C., Heikman, S.J., Green, D.S., Speck, J.S., Mishra, U.K.: Power performance of AlGaN/GaN HEMTs grown on SiC by plasma-assisted MBE. IEEE Electron Dev. Lett. 25, 247–249 (2004)

    Article  Google Scholar 

  7. Haffouz, S., Tang, H., Bardwell, J.A., Hsu, E.M., Webb, J.B., Rolfe, S.: AlGaN/GaN field effect transistors with C-doped GaN buffer layer as an electrical isolation template grown by molecular beam epitaxy. Solid-state Electron. 49(5), 802–807 (2005)

    Article  Google Scholar 

  8. Choi, Y.C., Shi, J., Pophristic, M., Spencer, M.G., Eastman, L.F.: C-doped semi-insulating GaN HFETs on sapphire substrates with a high breakdown voltage and low specific on-resistance. J. Vac. Sci. Technol. B 25(6), 1836–1842 (2007)

    Article  Google Scholar 

  9. http://www.wsi.tum.de/nextnano3 and http://www.nextnano.de

  10. Mazumder, P., Kulkarni, S., Bhattacharya, M., Sun, J.P., Haddad, G.I.: Digital circuit applications of resonant tunneling devices. Proc IEEE 86(4), 664–686 (1998)

  11. Haddad, G.I., Reddy, U.K., Sun, J.P., Mains, R.K.: The bound-state resonant tunneling transistor (BSRTT): fabrication, DC, I-V characteristics and high-frequency properties. Superlattices Microstruct. 7(4), 369–374 (1990)

  12. Brown, E.R., Soilner, T.C.L.G., Parker, C.D., Goodhue, W.D., Chen, C.L.: Oscillations up to 420 GHz in GaAs/AlAs resonant tunneling diodes. Appl. Phys. Lett. 55(17), 1777 (1989)

    Article  Google Scholar 

  13. Lunardi, L.M., Sen, S., Capasso, F., Smith, P.R., Sivco, D.L., Cho, A.Y.: Microwave multiple-state resonant tunneling bipolar transistors. IEEE Electron Dev. Lett. 10(5), 219–221 (1989)

    Article  Google Scholar 

  14. Capasso, F., Sen, S., Beltram, F., Lunardi, L.M., Vengurlekar, A.S., Smith, P.R., Shah, N.J., Malik, R.J., Cho, A.Y.: Quantum functional devices: resonant-tunneling transistors, circuits with reduced complexity, and multiple valued logic. IEEE Trans. Electron Dev. 36(10), 2065–2082 (1989)

    Article  Google Scholar 

  15. Capasso, F., Mohammed, K., Cho, A.Y.: Resonant tunneling through double barriers, perpendicular quantum transport phenomena in superlattices, and their device applications. IEEE J. Quantum Electron. 22(9), 1853–1869 (1986)

    Article  Google Scholar 

  16. Chou, S.Y., Allee, D.R., Pease, R.F., Harris, J.S.: Lateral resonant tunneling transistors employing field-induced quantum wells and barriers. Proc IEEE 79(8), 1131–1139 (1991)

    Article  Google Scholar 

  17. Woodward, T.K., McGill, T.C., Burhham, R.D., Chung, H.F.: Resonant tunneling field-effect transistors. Superlatticce Microstruct. 4(1), 1–9 (1989)

    Article  Google Scholar 

  18. Talele, K., Patil, D.S.: Analysis of wave function, energy and transmission coefficients in GaN/AlGaN susperlatice nanostructures. Prog. Electromagn. Res. 81, 237–252 (2008)

    Article  Google Scholar 

  19. Birner, S., Schindler, C., Greck, P., Sabathil, M., Vogl, P.: Ballistic quantum transport using the contact block reduction (CBR) method. J. Comput. Electron. 8(3–4), 267–286 (2009)

    Article  Google Scholar 

  20. Mazumdar, Kaushik, Hussain, Saddam, Singh, Vishwanath Pratap, Ghosal, Aniruddha: Tunneling effect in double barrier nitride (AlGaN/GaN) heterostructures at very low tempetarure. Sci. Int. 27(2), 1017–1019 (2015)

    Google Scholar 

  21. Lee, Chomsik: Resonant tunneling transistor characteristics using a Fabry–Perot resonator. J. Korean Phys. Soc. 31(1), 112–116 (1997)

    Google Scholar 

  22. Birner, S., Zibold, T., Andlauer, T., Kubis, T., Sabathil, M., Trellakis, A., Vogl, P.: Nextnano: general purpose 3-D simulations. IEEE Trans. Electron Dev. 54(9), 2137–2142 (2007)

    Article  Google Scholar 

  23. Hong, H., Shin, M., Vasileska, D., Klimeck, G., Klimeck, G.: Feasibility, accuracy, and performance of contact block reduction method for multi-band simulations of ballistic quantum transport. J. Appl. Phys. 111(6), 063705 (2012)

    Article  Google Scholar 

  24. Mamaluy, D., Vasileska, D., Sabathil, M., Zibold, T., Vogl, P.: Contact block reduction method for ballistic transport and carrier densities of open nanostructures. Phys. Rev. B 71(24), 245–321 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work is the result of a joint collaboration between the groups of Physics and Technology of Optoelectronic Semiconductors at the University of Paderborn, Germany and the Laboratory of Materials, Applications and Environment at the University Mustapha Stambouli of Mascara, Algeria. T.W. and D.J.As. acknowledge financial support by the German Science Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bouguenna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouguenna, D., Wecker, T., As, D.J. et al. Numerical analysis of transmission coefficient, LDOS, and DOS in superlattice nanostructures of cubic \(\hbox {Al}_{x}\hbox {Ga}_{1-x}\hbox {N/GaN}\) resonant tunneling MODFETs. J Comput Electron 15, 1269–1274 (2016). https://doi.org/10.1007/s10825-016-0892-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0892-4

Keywords

Navigation