Skip to main content
Log in

Continuity equation based nonquasi-static charge model for independent double gate MOSFET

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Using the numerical device simulation we show that the relationship between the surface potentials along the channel in any double gate (DG) MOSFET remains invariant in QS (quasistatic) and NQS (nonquasi-static) condition for the same terminal voltages. This concept along with the recently proposed ‘piecewise charge linearization’ technique is then used to develop the intrinsic NQS charge model for a Independent DG (IDG) MOSFET by solving the governing continuity equation. It is also demonstrated that unlike the usual MOSFET transcapacitances, the inter-gate transcapacitance of a IDG-MOSFET initially increases with the frequency and then saturates, which might find novel analog circuit application. The proposed NQS model shows good agreement with numerical device simulations and appears to be useful for efficient circuit simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Masahara, M., Liu, Y., Sakamoto, K., Endo, K., Matsukawa, T., Ishii, K., Sekigawa, T., Yamauchi, H., Tanoue, H., Kanemaru, S., Koike, H., Suzuki, E.: Demonstration, analysis, and device design considerations for independent DG MOSFETs. IEEE Trans. Electron Devices 52(9), 2046–2053 (2005)

    Article  Google Scholar 

  2. Shrivatsava, M., Baghini, M.S., Sachid, A.B., Sharma, D.K., Rao, V.R.: A novel and robust approach for common mode feedback using IDDG FinFET. IEEE Trans. Electron Devices 55(11), 3274–3282 (2008)

    Article  Google Scholar 

  3. Zhang, W., Fossum, J.G., Mathew, L., Du, Y.: Physical insights regarding design and performance of independent-gate FETs. IEEE Trans. Electron Devices 52(10), 2198–2206 (2005)

    Article  Google Scholar 

  4. Khandelwal, S., Chauhan, Y.S., Lu, D.D., Venugopalan, S., Karim, M.A.U., Sachid, A.B., Nguyen, B.Y., Rozeau, O., Faymot, O., Niknejad, A.M., Hu, C.C.: BSIM-IMG: a compact model for ultra-thin body SOI MOSFETs with back gate control. IEEE Trans. Electron Devices 59(8), 2019–2026 (2012)

    Article  Google Scholar 

  5. Faynot, O., Andrieu, F., Weber, O., Fenouillet-Beranger, C., Perreau, P., Mazurier, J., Benoist, T., Rozeau, O., Poiroux, T., Vinet, M., Grenouillet, L., Noel, J.-P., Posseme, N., Barnola, S., Martin, F., Lapeyre, C., Casse, M., Garros, X., Jaud, M.-A., Thomas, O., Cebarario, G., Tosti, L., Brevard, L., Tabone, C., Gaud, P., Barraud, S., Ernst, T., Delonibus, S.: Planar fully depleted SOI technology: A powerful architecture for 20 nm and beyond. In: IEDM Tech. Dig., San Francisco, CA, Dec. 6–8, pp. 3.2.1–3.2.4 (2011)

    Google Scholar 

  6. Dessai, G., Wu, W., Gildenblat, G.: Compact charge model for independent gate asymmetric DGFET. IEEE Trans. Electron Devices 59(8), 2019–2026 (2012)

    Article  Google Scholar 

  7. Jandhyala, S., Abraham, A., Anghel, C., Mahapatra, S.: Piecewise linearization technique for compact charge modelling of independent DG MOSFET. IEEE Trans. Electron Devices 59(7), 1974–1979 (2012)

    Article  Google Scholar 

  8. Jandhyala, S., Abraham, A., Anghel, C., Mahapatra, S.: Errata to piecewise linearization technique for compact charge modelling of independent DG MOSFET. IEEE Trans. Electron Devices 60(1), 518 (2013)

    Article  Google Scholar 

  9. Tsividis, Y., McAndrew, C.: Operation and Modelling of the MOS Transistor, 3rd edn. Oxford University Press, Oxford (2011)

    Google Scholar 

  10. Wang, H., Chen, T.L., Gildenblat, G.: Quasi-static and nonquasi-static compact MOSFET models based on symmetric linearization of the bulk and inversion charges. IEEE Trans. Electron Devices 50(11), 2262–2272 (2003)

    Article  Google Scholar 

  11. Liu, W., Hu, C.: BSIM4 and MOSFET Modeling for IC Simulation. World Scientific, Singapore (2011)

    Google Scholar 

  12. Miura-Mattausch, M., Mattausch, H.J., Ezaki, T.: The Physics and Modeling of MOSFETs: Surface-Potential Model HiSim. World Scientific, Singapore (2008)

    Google Scholar 

  13. Zhu, Z., Gildenblat, G., McAndrew, C.C., Lim, I.S.: Accurate RTA-based nonquasi-static MOSFET model for RF and mixed-signal simulations. IEEE Trans. Electron Devices 59(5), 1236–1244 (2012)

    Article  Google Scholar 

  14. ATLAS: Device simulation framework, version 5.18.3.R. Silvaco International USA 2012. Users’ Manual [online]. Available: www.silvaco.com

  15. Sarkar, S., Roy, A.S., Mahapatra, S.: Unified large and small signal non-quasi-static model for long channel symmetric DG MOSFET. Solid-State Electron. 54(11), 1421–1429 (2010)

    Article  Google Scholar 

  16. Sharan, N., Mahapatra, S.: Non-quasi-static charge model for common double gate MOSFET adapted to gate oxide thickness asymmetry. IEEE Trans. Electron Devices 60(7) (2013)

  17. Jandhyala, S., Kashyap, R., Anghel, C., Mahapatra, S.: A simple charge model for symmetric double-gate MOSFETs adapted to gate-oxide-thickness asymmetry. IEEE Trans. Electron Devices 59(4), 1002–1007 (2012)

    Article  Google Scholar 

  18. Sahoo, A., Thakur, P.K., Mahapatra, S.: A computationally efficient generalized Poisson solution for independent double gate transistors. IEEE Trans. Electron Devices 57(3), 632–636 (2010)

    Article  Google Scholar 

  19. Wang, H., Li, X., Wu, W., Gildenblat, G., van Langevelde, R., Smit, G.D.J., Scholten, A.J., Klaassen, D.B.M.: A unified nonquasi-static MOSFET model for large-signal and small-signal simulations. IEEE Trans. Electron Devices 53(9), 2035–2043 (2006)

    Article  Google Scholar 

  20. MATLAB: the language of technical computing 7.11.0 (R2010b). MathWorks. Available: www.mathworks.in/products/matlab/

Download references

Acknowledgements

This work was supported by the Department of Science and Technology, Government of India, under Ramanna Fellowship under Grant No: SR/S3/EECE/0123/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Sharan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharan, N., Mahapatra, S. Continuity equation based nonquasi-static charge model for independent double gate MOSFET. J Comput Electron 13, 353–359 (2014). https://doi.org/10.1007/s10825-013-0540-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0540-1

Keywords

Navigation