Skip to main content

Advertisement

Log in

Limited evolutionary responses to harvesting regime in the intensive production of algae

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Plastic changes in the growth and productivity of algae in response to environment and stocking density are well established. In contrast, the capacity for such changes to persist once environmental differences cease, potentially signalling an evolutionary response, have rarely been tested for algae in intensive production systems. We tested whether continuous differences in harvesting regime (a high stocking density/low-yield regime versus low stocking density/high-yield regime) generated changes in biomass productivity and other growth metrics within several strains of the clonal macroalga Oedogonium (Chlorophyta, Oedogoniales) and whether such changes persisted once differential harvesting yields ceased. We found considerable plasticity in growth rate and biomass productivity over a 12-week period of active selection (i.e. repeated high-yield and low-yield harvesting of clonal lineages within strains) and that strains responded differently to this selection pressure over time. While small, but significant, differences in growth rates of clonal lineages exposed to high-yield vs low-yield harvesting regimes were maintained after prolonged culture under a common selection regime (i.e. medium-yield harvesting), differences in biomass productivity were not. There was no evidence for positive or negative effects of maintaining multiple strains in polyculture on growth and biomass productivity. Overall, we detected limited potential for evolutionary responses to harvesting regime in the main commercial trait of interest—biomass productivity. This outcome is important for commercial cultivation in intensive production systems, since it identifies a low risk that harvesting practices will impact negatively on biomass productivity in the longer term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams JMM, Ross AB, Anastasakis K, Hodgson EM, Gallagher JA, Jones JM, Donnison IS (2011) Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion. Bioresource Technol 102:226–234

    Article  CAS  Google Scholar 

  • Borowitzka LJ, Borowitzka MA (1990) Commercial production of β-carotene by Dunaliella salina in open ponds. Bull Mar Sci 47:244–252

    Google Scholar 

  • Bruno JF, Boyer KE, Duffy J, Lee SC, Kertesz JS (2005) Effects of macroalgal species identity and richness on primary production in benthic marine communities. Ecol Lett 8:1165–1174

    Article  PubMed  Google Scholar 

  • Bruno JF, Lee SC, Kertesz JS, Carpenter RC, Long ZT, Emmett Duffy J (2006) Partitioning the effects of algal species identity and richness on benthic marine primary production. Oikos 115:170–178

    Article  Google Scholar 

  • Capo T, Jaramillo J, Boyd A, Lapointe B, Serafy J (1999) Sustained high yields of Gracilaria (Rhodophyta) grown in intensive large-scale culture. J Appl Phycol 11:143–147

    Article  Google Scholar 

  • Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature 472:86–89

    Article  CAS  PubMed  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotech Adv 29:686–702

    Article  CAS  Google Scholar 

  • Cole AJ, de Nys R, Paul NA (2014) Removing constraints on the biomass production of freshwater macroalgae by manipulating water exchange to manage nutrient flux. PLoS One 9(7):e101284

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole AJ, de Nys R, Paul NA (2015) Biorecovery of nutrient waste as protein in freshwater macroalgae. Algal Res 7:56–65

    Article  Google Scholar 

  • Coltman DW, O'Donoghue P, Jorgenson JT, Hogg JT, Strobeck C, Festa-Bianchet M (2003) Undesirable evolutionary consequences of trophy hunting. Nature 426:655–658

    Article  CAS  PubMed  Google Scholar 

  • Conover DO, Munch SB (2002) Sustaining fisheries yields over evolutionary time scales. Science 297:94–96

    Article  CAS  PubMed  Google Scholar 

  • de Castro AS, Garcia VMT (2005) Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture 246:405–412

  • Edeline E, Carlson SM, Stige LC, Winfield IJ, Fletcher JM, James JB, Haugen TO, Vøllestad LA, Stenseth NC (2007) Trait changes in a harvested population are driven by a dynamic tug-of-war between natural and harvest selection. Proc Nat Acad Sci 104:15799–15804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott DC, Biller P, Ross AB, Schmidt AJ, Jones SB (2015) Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresource Technol 178:147–156

    Article  CAS  Google Scholar 

  • Enberg K, Jørgensen C, Dunlop ES, Heino M, Dieckmann U (2009) Implications of fisheries-induced evolution for stock rebuilding and recovery. Evol Appl 2:394–414

    Article  PubMed  PubMed Central  Google Scholar 

  • Engelhardt KAM, Ritchie ME (2001) Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411:687–689

    Article  CAS  PubMed  Google Scholar 

  • Entwisle TJ, Skinner S, Lewis SH, Foard HJ (2007) Algae of Australia: Batrachospermales, Thoreales, Oedogoniales and Zygnemaceae. CSIRO Publishing/Australian Biological Resources Study Collingwood, Australia

    Google Scholar 

  • Ernande B, Dieckmann U, Heino M (2004) Adaptive changes in harvested populations: plasticity and evolution of age and size at maturation. Proc R Soc London B 271:415–423

    Article  Google Scholar 

  • Fagerström T, Briscoe DA, Sunnucks P (1998) Evolution of mitotic cell-lineages in multicellular organisms. Trends Ecol Evol 13:117–120

    Article  PubMed  Google Scholar 

  • Garel M, Cugnasse J-M, Maillard D, Gaillard J-M, Hewison AJM, Dubray D (2007) Selective harvesting and habitat loss produce long-term life history changes in a mouflon population. Ecol Appl 17:1607–1618

    Article  PubMed  Google Scholar 

  • Garland T Jr, Rose MR (2009) Experimental evolution: concepts, methods and applications of selection experiments. University of California Press

  • Gellenbeck K (2012) Utilization of algal materials for nutraceutical and cosmeceutical applications—what do manufacturers need to know? J Appl Phycol 24:309–313

    Article  Google Scholar 

  • Gill DE, Chao L, Perkins SL, Wolf JB (1995) Genetic mosaicism in plants and clonal animals. Annu Rev Ecol Syst 26:423–444

    Article  Google Scholar 

  • Goldman JC, Ryther JH (1975) Mass production of marine algae in outdoor cultures. Nature 254:594–595

    Article  Google Scholar 

  • Gosch BJ, Magnusson M, Paul NA, Nys R (2012) Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts. GCB Bioenergy 4:919–930

    Article  CAS  Google Scholar 

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotech 21:210–216

    Article  CAS  Google Scholar 

  • Guillemin M-L, Faugeron S, Destombe C, Viard F, Correa JA, Valero M (2008) Genetic variation in wild and cultivated populations of the haploid–diploid red alga Gracilaria chilensis: how farming practices favor asexual reproduction and heterozygosity. Evolution 62:1500–1519

    Article  PubMed  Google Scholar 

  • Hafting J, Critchley A, Cornish ML, Hubley S, Archibald A (2012) On-land cultivation of functional seaweed products for human usage. J Appl Phycol 24:385–392

    Article  Google Scholar 

  • Hector A, Bazeley-White E, Loreau M, Otway S, Schmid B (2002) Overyielding in grassland communities: testing the sampling effect hypothesis with replicated biodiversity experiments. Ecol Lett 5:502–511

    Article  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira M, Diemer M, Dimitrakopoulos P, Finn J, Freitas H, Giller P, Good J (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127

    Article  CAS  PubMed  Google Scholar 

  • Hendry AP, Kinnison MT, Heino M, Day T, Smith TB, Fitt G, Bergstrom CT, Oakeshott J, Jørgensen PS, Zalucki MP, Gilchrist G, Southerton S, Sih A, Strauss S, Denison RF, Carroll SP (2011) Evolutionary principles and their practical application. Evol Appl 4:159–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Hooper DU, Dukes JS (2004) Overyielding among plant functional groups in a long-term experiment. Ecol Lett 7:95–105

    Article  Google Scholar 

  • Jiménez-Escrig A, Gómez-Ordóñez E, Rupérez P (2012) Brown and red seaweeds as potential sources of antioxidant nutraceuticals. J Appl Phycol 24:1123–1132

    Article  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theoret Appl Genet 60:197–214

    Article  CAS  Google Scholar 

  • Law R (2000) Fishing, selection, and phenotypic evolution. ICES J Mar Sci 57:659–668

    Article  Google Scholar 

  • Law W, Salick J (2005) Human-induced dwarfing of Himalayan snow lotus, Saussurea laniceps (Asteraceae). Proc Nat Acad Sci U S A 102:10218–10220

    Article  CAS  Google Scholar 

  • Lawton RJ, Carl C, de Nys R, Paul NA (2015) Heritable variation in growth and biomass productivity in the clonal freshwater macroalga Oedogonium. Algal Res 8:108–114

    Article  Google Scholar 

  • Lawton RJ, de Nys R, Paul NA (2013) Selecting reliable and robust freshwater macroalgae for biomass applications. PLoS One 8(5):e64168

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawton RJ, de Nys R, Skinner S, Paul NA (2014) Isolation and identification of Oedogonium species and strains for biomass applications. PLoS One 9(3):e90223

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin BB (2011) Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61:183–193

    Article  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models. SAS Institute Inc., Cary, U.S.A.

    Google Scholar 

  • Magnusson M, Mata L, Wang N, Zhao J, de Nys R, Paul NA (2015) Manipulating antioxidant content in macroalgae in intensive land-based cultivation systems for functional food applications. Algal Res 8:153–160

    Article  Google Scholar 

  • Mata L, Magnusson M, Paul N, de Nys R (2016) The intensive land-based production of the green seaweeds Derbesia tenuissima and Ulva ohnoi: biomass and bioproducts. J Appl Phycol 28:365–375

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Meins F (1983) Heritable variation in plant cell culture. AnnuRev Plant Physiol 34:327–346

    Article  Google Scholar 

  • Meneses I, Santelices B (1999) Strain selection and genetic variation in Gracilaria chilensis (Gracilariales, Rhodophyta). J Appl Phycol 11:241–246

    Article  Google Scholar 

  • Moheimani N, Borowitzka M (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712

    Article  Google Scholar 

  • Monro K, Poore AG (2004) Selection in modular organisms: is intraclonal variation in macroalgae evolutionarily important? Am Nat 163:564–578

    Article  PubMed  Google Scholar 

  • Monro K, Poore AG (2009) The potential for evolutionary responses to cell-lineage selection on growth form and its plasticity in a red seaweed. Am Nat 173:151–163

    Article  PubMed  Google Scholar 

  • Mooney EH, McGraw JB (2009) Relationship between age, size, and reproduction in populations of American ginseng, Panax quinquefolius (Araliaceae), across a range of harvest pressures. Ecoscience 16:84–94

    Article  Google Scholar 

  • Neveux N, Magnusson M, Maschmeyer T, de Nys R, Paul NA (2014a) Comparing the potential production and value of high-energy liquid fuels and protein from marine and freshwater macroalgae. GCB Bioenergy. doi:10.1111/gcbb.12171

    Google Scholar 

  • Neveux N, Yuen A, Jazrawi C, Magnusson M, Haynes B, Masters A, Montoya A, Paul N, Maschmeyer T, de Nys R (2014b) Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. Bioresource Technol 155:334–341

    Article  CAS  Google Scholar 

  • Orive ME (2001) Somatic mutations in organisms with complex life histories. Theor Popul Biol 59:235–249

    Article  CAS  PubMed  Google Scholar 

  • Park J, Craggs R (2011) Algal production in wastewater treatment high rate algal ponds for potential biofuel use. Water Sci Technol 63:2403–2410

    Article  CAS  PubMed  Google Scholar 

  • Pereira R, Yarish C, Sousa-Pinto I (2006) The influence of stocking density, light and temperature on the growth, production and nutrient removal capacity of Porphyra dioica (Bangiales, Rhodophyta). Aquaculture 252:66–78

    Article  CAS  Google Scholar 

  • Picasso VD, Brummer EC, Liebman M, Dixon PM, Wilsey BJ (2008) Crop species diversity affects productivity and weed suppression in perennial polycultures under two management strategies. Crop Sci 48:331–342

    Article  Google Scholar 

  • Poore AGB, Fagerström T (2000) Intraclonal variation in macroalgae: causes and evolutionary consequences. Selection 1:123–134

    Google Scholar 

  • Proaktor G, Coulson T, Milner-Gulland EJ (2007) Evolutionary responses to harvesting in ungulates. J Anim Ecol 76:669–678

    Article  CAS  PubMed  Google Scholar 

  • Pujol B, David P, McKey D (2005) Microevolution in agricultural environments: how a traditional Amerindian farming practice favours heterozygosity in cassava (Manihot esculenta Crantz, Euphorbiaceae). Ecol Lett 8:138–147

    Article  Google Scholar 

  • Reznick DN, Ghalambor CK (2005) Can commercial fishing cause evolution? Answers from guppies (Poecilia reticulata). Can J Fish Aquat Sci 62:791–801

    Article  Google Scholar 

  • Roberts DA, de Nys R, Paul NA (2013) The effect of CO2 on algal growth in industrial waste water for bioenergy and bioremediation applications. PLoS One 8(11):e81631

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotech Bioeng 102:100–112

    Article  CAS  Google Scholar 

  • Salo T, Gustafsson C, Boström C (2009) Effects of plant diversity on primary production and species interactions in brackish water angiosperm communities. Mar Ecol Prog Ser 396:261–272

    Article  Google Scholar 

  • Samocha TM, Fricker J, Ali AM, Shpigel M, Neori A (2015) Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an integrated multi-trophic aquaculture (IMTA) system. Aquaculture 446:263–271

    Article  Google Scholar 

  • Schwaegerle KE, McIntyre H, Swingley C (2000) Quantitative genetics and the persistence of environmental effects in clonally propagated organisms. Evolution 54:452–461

    Article  CAS  PubMed  Google Scholar 

  • Snapp SS, Gentry LE, Harwood R (2010) Management intensity—not biodiversity—the driver of ecosystem services in a long-term row crop experiment. Agricult Ecosyst Environ 138:242–248

    Article  Google Scholar 

  • Stachowicz JJ, Best RJ, Bracken MES, Graham MH (2008a) Complementarity in marine biodiversity manipulations: reconciling divergent evidence from field and mesocosm experiments. Proc Nat Acad Sci 105:18842–18847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stachowicz JJ, Bruno JF, Duffy JE (2007) Understanding the effects of marine biodiversity on communities and ecosystems. Annu Rev Ecol Evol Systemat 38:739–766

    Article  Google Scholar 

  • Stachowicz JJ, Graham M, Bracken MES, Szoboszlai AI (2008b) Diversity enhances cover and stability of seaweed assemblages: the role of heterogeneity and time. Ecology 89:3008–3019

    Article  Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Article  CAS  Google Scholar 

  • Walsh MR, Munch SB, Chiba S, Conover DO (2006) Maladaptive changes in multiple traits caused by fishing: impediments to population recovery. Ecol Lett 9:142–148

    Article  PubMed  Google Scholar 

  • Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Envi Eng 135:1115–1122

    Article  CAS  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technol 101:5494–5500

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Martinez, T. Mannering, N. Neveux and T. Carl for assistance with experiments. We thank S. Skinner for the morphological identification of O. intermedium and R. de Nys and two anonymous reviewers for providing comments on the manuscript. This project was supported by MBD Energy Ltd. The sponsors had no involvement in study design; in the collection, analysis and interpretation of data; in the writing of the report and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A Paul.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

ESM 2

(DOCX 20 kb)

ESM 3

(DOCX 477 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawton, R.J., Paul, N.A., Marshall, D.J. et al. Limited evolutionary responses to harvesting regime in the intensive production of algae. J Appl Phycol 29, 1449–1459 (2017). https://doi.org/10.1007/s10811-016-1044-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-1044-8

Keywords

Navigation