Skip to main content
Log in

New resource for population genetics studies on the Australasian intertidal brown alga, Hormosira banksii: isolation and characterization of 15 polymorphic microsatellite loci through next generation DNA sequencing

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The Australasian fucoid, Hormosira banksii, commonly known as ‘Neptune’s necklace’ or ‘bubbleweed’ is regarded as an autogenic ecosystem engineer with no functional equivalents. Population declines resulting from climate change and other anthropogenic disturbances pose significant threats to intertidal biodiversity. For effective conservation strategies, patterns of gene flow and population genetic structure across the species distribution need to be clearly understood. We developed a suite of 15 polymorphic microsatellite markers using next generation sequencing of 53–55 individuals from two sites (south-western Victoria and central New South Wales, Australia) and a replicated spatially hierarchical sampling design. We observed low to moderate genetic variation across most loci (mean number of alleles per locus =3.26; mean expected heterozygosity =0.38) with no evidence of individual loci deviating significantly from Hardy-Weinberg equilibrium. Marker independence was confirmed with tests for linkage disequilibrium, and analyses indicated no evidence of null alleles across loci. Independent spatial autocorrelation analyses were performed for each site using multilocus genotypes and different relatedness measures. Both analyses indicated no significant patterns between relatedness and geographic distance, complemented by non-significant Hardy-Weinberg estimates (P < 0.05), suggesting that individuals from each site represent a randomly mating, outcrossing population. A preliminary investigation of population structure indicates that gene flow among sites is limited (F ST = 0.49), however more comprehensive sampling is needed to determine the extent of population structure across the species range (>10,000 km). The genetic markers described provide a valuable resource for future population genetic assessments that will help guide conservation planning for H. banksii and the associated intertidal communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ayre DJ, Minchinton TE, Perrin C (2009) Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier? Mol Ecol Notes 18:1887–1903

    Article  CAS  Google Scholar 

  • Ayres-Ostrock LM, Mauger S, Plastino EM, Oliveira MC, Valero M, Destombe C (2016) Development and characterization of microsatellite markers in two agarophyte species, Gracilaria birdiae and Gracilaria caudata (Gracilariaceae, Rhodophyta), using next-generation sequencing. J Appl Phycol 28:653–662

    Article  Google Scholar 

  • Baines PG, Edwards RJ, Fandry CB (1983) Observations of a new baroclinic current along the western continental slope of Bass Strait. Aust J Mar Freshw Res 34:155–157

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) Genetix 4.05, logiciel sous windows tm pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171. Université de Montpellier II, Montpellier

  • Bellgrove A, Clayton MN, Quinn GP (1997) Effects of secondarily treated sewage effluent on intertidal macroalgal recruitment processes. Mar Freshw Res 48:137–146

    Article  CAS  Google Scholar 

  • Bellgrove A, Clayton MN, Quinn GP (2004) An integrated study of the temporal and spatial variation in the supply of propagules, recruitment and assemblages of intertidal macroalgae on a wave-exposed rocky coast, Victoria, Australia. J Exp Mar Biol Ecol 310:207–225

    Article  Google Scholar 

  • Bennett S, Wernberg T, Connell SD, Hobday AJ, Johnson CR, Poloczanska ES (2015) The ‘Great Southern Reef’: social, ecological and economic value of Australia’s neglected kelp forests. Mar Freshw Res 67:47–56

    Article  Google Scholar 

  • Blacket MJ, Robin C, Good RT, Lee SF, Miller AD (2012) Universal primers for fluorescent labelling of PCR fragments-an efficient and cost-effective approach to genotyping by fluorescence. Mol Ecol Resour 12:456–463

    Article  CAS  PubMed  Google Scholar 

  • Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455

    Article  CAS  PubMed  Google Scholar 

  • Candeias R, Casado-Amezúa P, Pearson GA, Serrão EA, Teixeira S (2015) Polymorphic microsatellite markers in the brown seaweed Fucus vesiculosus. BMC Res Notes 8(1):73. doi:10.1186/s13104-015-1035-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Coleman MA, Chambers J, Knott NA, Malcolm HA, Harasti D, Jordan A, Kelaher BP (2011) Connectivity within and among a network of temperate marine reserves. PLoS One 6(5):e20168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colton MA, Swearer SE (2012) Locating faunal breaks in the nearshore fish assemblage of Victoria, Australia. Mar Freshw Res 63:218–231

    Article  Google Scholar 

  • Couceiro L, Maneiro I, Mauger S, Valero M, Ruiz JM, Barreiro R (2011) Microsatellite development in Rhodophyta using high-throughput sequence data. J Phycol 47:1258–1265

    Article  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475

    Article  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molec Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hedrick P (2011) Genetics of populations. Jones & Bartlett, Boston

    Google Scholar 

  • Hill R, Bellgrove A, Macreadie PI, Petrou K, Beardall J, Steven A, Ralph PJ (2015) Can macroalgae contribute to blue carbon? An Australian perspective. Limnol Oceanogr 60:1689–1706

    Article  CAS  Google Scholar 

  • Holt RD, Gomulkiewicz R (1997) How does immigration influence local adaptation? A reexamination of a familiar paradigm. Am Nat 149:563–572

    Article  Google Scholar 

  • Jenkins SR, Hawkins SJ, Norton TA (1999) Direct and indirect effects of a macroalgal canopy and limpet grazing in structuring a sheltered inter-tidal community. Mar Ecol Prog Ser 188:81–92

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957

    Article  Google Scholar 

  • Keough MJ, Quinn GP (1998) Effects of periodic disturbances from trampling on rocky intertidal algal beds. Ecol Appl 8:141–161

    Google Scholar 

  • Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292:679–686

    Article  CAS  PubMed  Google Scholar 

  • Levring T (1949) Fertilisation experiments with Hormosira banksii (Turn.) Dcne. Physiol Plant 2:45–55

    Article  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen ZT, Dewell SB et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKenzie PF, Bellgrove A (2008) Dispersal of Hormosira banksii (Phaeophyceae) via detached fragments: reproductive viability and longevity. J Phycol 44:1108–1115

    Article  PubMed  Google Scholar 

  • McKenzie PF, Bellgrove A (2009) Dislodgment and attachment strength of the intertidal macroalga, Hormosira banksii (Fucales, Phaeophyceae). Phycologia 48:335–343

    Article  Google Scholar 

  • Meglecz E, Costedoat C, Dubut V, Gilles A, Malausa T, Pech N, Martin JF (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26:403–404

    Article  CAS  PubMed  Google Scholar 

  • Milanese MMM, Sara A, Sara G, Murray JH (2011) Climate change, marine policy and the valuation of Mediterranean intertidal ecosystems. Chem Ecol 27:95–105

    Article  Google Scholar 

  • Miller AD, Versace VL, Matthews TG, Montgomery S, Bowie KC (2013) Ocean currents influence the genetic structure of an intertidal mollusc in south-eastern Australia—implications for predicting the movement of passive dispersers across a marine biogeographic barrier. Ecol Evol 3:1248–1261

    Article  PubMed  PubMed Central  Google Scholar 

  • Osborn JEM (1948) The structure and life history of Hormosira banksii (Turner) Decaisne. Trans R Soc NZ 77:47–71

    Google Scholar 

  • Park SDE (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. PhD thesis, University of Dublin, Ireland

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetics software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Ralph PJ, Morrison DA, Addison A (1998) A quantitative study of the patterns of morphological variation within Hormosira banksii (Turner) Decaisne (Fucales: Phaeophyta) in south-eastern Australia. J Exp Mar Biol Ecol 225:285–300

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Ridgway KR, Condie SA (2004) The 5500-km-long boundary flow off western and southern Australia. J Geophys Res-Oceans 109(C4) C04017. doi:10.1029/2003jc001921

  • Ridgway KR, Godfrey JS (1997) Seasonal cycle of the East Australian Current. J Geophys Res-Oceans 102(C10):22921–22936. doi:10.1029/97jc00227

    Article  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp. 365–386

    Google Scholar 

  • Sandery PA, Kaempf J (2007) Transport timescales for identifying seasonal variation in Bass Strait, south-eastern Australia. Estuar Coast Shelf Sci 74:684–696

    Article  Google Scholar 

  • Santelices B (1990) Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanogr Mar Biol Annu Rev 28:177–276

    Google Scholar 

  • Schiel DR (2006) Rivets or bolts? When single species count in the function of temperate rocky reef communities. J Exp Mar Biol Ecol 338:233–252

    Article  Google Scholar 

  • Schiel DR (2011) Biogeographic patterns and long-term changes on New Zealand coastal reefs: non-trophic cascades from diffuse and local impacts. J Exp Mar Biol Ecol 400:33–51

    Article  Google Scholar 

  • Schiel DR, Lilley SA (2007) Gradients of disturbance to an algal canopy and the modification of an intertidal community. Mar Ecol Prog Ser 339:1–11

    Article  Google Scholar 

  • Strain EMA, Thomson RJ, Micheli F, Mancuso FP, Airoldi L (2014) Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Glob Chang Biol 20:3300–3312

    Article  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wernberg T, Bennett S, Babcock RC, de Bettignies T, Cure K, Depczynski M, Dufois F, Fromont J, Fulton CJ, Hovey RK, Harvey ES, Holmes TH, Kendrick GA, Radford B, Santana-Garcon J, Saunders BJ, Smale DA, Thomsen MS, Tuckett CA, Tuya F, Vanderklift MA, Wilson S (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 353:169–172

    Article  CAS  PubMed  Google Scholar 

  • York KL, Blacket MJ, Appleton BR (2008) The Bassian Isthmus and the major ocean currents of southeast Australia influence the phylogeography and population structure of a southern Australian intertidal barnacle Catomerus polymerus (Darwin). Mol Ecol 17:1948–1961

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Prue McKenzie, Thèa Jacob, and Aimee Hauser are acknowledged for their preliminary work in optimizing DNA extraction in H. banksii, assessing ISSR markers for this species and preliminary microsatellite marker development. Sean Blake assisted with georeferencing samples. This research was supported by the Centre for Integrative Ecology and Faculty of Science, Engineering and Built Environment, Deakin University, and the C3—Climate Change Cluster, University of Technology Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alecia Bellgrove.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellgrove, A., van Rooyen, A., Weeks, A.R. et al. New resource for population genetics studies on the Australasian intertidal brown alga, Hormosira banksii: isolation and characterization of 15 polymorphic microsatellite loci through next generation DNA sequencing. J Appl Phycol 29, 1721–1727 (2017). https://doi.org/10.1007/s10811-016-1015-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-1015-0

Keywords

Navigation