Skip to main content
Log in

Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The importance of algae-derived biofuels has been highlighted by the current problems associated with fossil fuels. Considerable past research has shown that limiting nutrients such as nitrogen and phosphorus increases the cellular lipid content in microalgae. However, limiting the supply of nutrients results in decreased biomass, which in turn decreases the overall lipid productivity of cultures. Therefore, nutrient limitation has been a subject of dispute as to whether it will benefit biofuel production on an industrial scale. Our research explores the physiological changes a cell undergoes when exposed to nitrogen and phosphorus limitations, both individually and in combination, and also examines the biotechnological aspects of manipulating N and P in order to increase cellular lipids, by analyzing the lipid production. We show that nitrogen starvation and also nitrogen plus phosphorus starvation combined have a more profound effect on the physiology and macromolecular pools of Chlamydomonas reinhardtii than does phosphorus starvation alone. The photosynthetic performance of C. reinhardtii underwent drastic changes under nitrogen starvation, but remained relatively unaffected under phosphorus starvation. The neutral lipid concentration per cell was at least 2.4-fold higher in all the nutrient-starved groups than the nutrient-replete controls, but the protein level per cell was lower in the nitrogen-starved groups. Overall, nitrogen starvation has a more dramatic effect on the physiology and neutral lipids and protein levels of C. reinhardtii than phosphorus starvation. However, the level of total lipids per volume of culture obtained was similar among nutrient-replete and all of the nutrient-starved groups. We conclude that combined nitrogen and phosphorus starvation does not likely benefit biofuel production in terms of enhanced lipid or biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aksoy M, Pootakham W, Grossman AR (2014) Critical function of a Chlamydomonas reinhardtii putative polyphosphate polymerase subunit during nutrient deprivation. Plant Cell 26:4214–4229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antal T, Matorin D, Ilyash L, Volgusheva A, Osipov V, Konyuhov I, Krendeleva T, Rubin A (2009) Probing of photosynthetic reactions in four phytoplanktonic algae with a PEA fluorometer. Photosynth Res 102:67–76

    Article  CAS  PubMed  Google Scholar 

  • Axelsson L (1988) Changes in pH as a measure of photosynthesis by marine macroalgae. Mar Biol 97:287–294

  • Beale SI, Castelfranco PA (1973) 14C incorporation from exogenous compounds into δ-aminolevulinic acid by greening cucumber cotyledons. Biochem Biophys Res Commun 52:143–149

    Article  CAS  PubMed  Google Scholar 

  • Benemann JR (2008) Overview: algae oil to biofuels. In: NREL-AFOSR Workshop, Algal Oil for Jet Fuel Production. NREL, Golden, Colorado. http://www.nrel.gov/biomass/algal_oil_workshop.html

  • Berdalet E, Latasa M, Estrada M (1994) Effects of nitrogen and phosphorus starvation on nucleic acid and protein content of Heterocapsa sp. J Plankton Res 16:303–316

    Article  CAS  Google Scholar 

  • Berden-Zrimec M, Drinovec L, Molinari I, Zrimec A, Umani SF, Monti M (2008) Delayed fluorescence as a measure of nutrient limitation in Dunaliella tertiolecta. J Photochem Photobiol B 92:13–18

    Article  CAS  PubMed  Google Scholar 

  • Berges JA, Charlebois DO, Mauzerall DC, Falkowski PG (1996) Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol 110:689–696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boisvert S, Joly D, Carpentier R (2006) Quantitative analysis of the experimental O–J–I–P chlorophyll fluorescence induction kinetics. FEBS J 273:4770–4777

    Article  CAS  PubMed  Google Scholar 

  • Bolch CS, Blackburn S (1996) Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. J Appl Phycol 8:5–13

    Article  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Browne CA (1942) Liebig and the law of the minimum. In: Moulton FR (ed) Liebig and after Liebig Publication (16). American Association for the Advancement of Science, Washington DC, pp 71–82

    Google Scholar 

  • Cataldo DA, Maroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Comm Soil Sci Plant Anal 6:71–80

    Article  CAS  Google Scholar 

  • Ceppi MG, Oukarroum A, Çiçek N, Strasser RJ, Schansker G (2012) The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol Plant 144(3):277–288

  • Chen PS, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Anal Chem 26:1756–1758

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Christianson C, Dunham M (2005) Modified Phosphate assay. Dunham Lab Web; http://dunham.gs.washington.edu/MDphosphateassay.htm. Accessed 06 Oct 2015

  • Chu FF, Chu PN, Shen XF, Lam PK, Zeng RJ (2014) Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresour Technol 152:241–246

    Article  CAS  PubMed  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process: Process Intensif 48:1146–1151

    Article  CAS  Google Scholar 

  • Cooksey K, Guckert J, Williams S, Callis P (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J Microb Meth 6:333–345

    Article  CAS  Google Scholar 

  • Cosgrove J, Borowitzka MA (2011) Chlorophyll fluorescence terminology: an introduction. In: Suggett DJ, Prásil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 1–17

    Google Scholar 

  • Couso I, Vila M, Vigara J, Cordero BF, Vargas MÁ, Rodríguez H, León R (2012) Synthesis of carotenoids and regulation of the carotenoid biosynthesis pathway in response to high light stress in the unicellular microalga Chlamydomonas reinhardtii. Eur J Phycol 47:223–232

    Article  CAS  Google Scholar 

  • de Marchin T, Ghysels B, Nicolay S, Franck F (2014) Analysis of PSII antenna size heterogeneity of Chlamydomonas reinhardtii during state transitions. Biochim Biophys Acta 1837:121–130

    Article  PubMed  Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol 48:59–68

    Article  CAS  PubMed  Google Scholar 

  • Eggink LL, Park H, Hoober JK (2012) The role of the envelope in assembly of light-harvesting complexes in the chloroplasts: distribution of LHCP between chloroplasts and vacuoles during chloroplast development IN Chlamydomonas reinhardtii. In: Argyroudi-Akoyunoglou JH, Senger H (eds) The chloroplast: from molecular biology to biotechnology. Springer , Berlin, 64:161–166

  • El-Sheek MM, Rady AA (1995) Effect of phosphorus starvation on growth, photosynthesis and some metabolic processes in the unicellular green alga Chlorella kessleri. Phys Chem Chem Phys 35:139–151

    CAS  Google Scholar 

  • Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Falkowski P, Kolber Z (1995) Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans. Funct Plant Biol 22:341–355

    Google Scholar 

  • Fufsler TP, Castelfranco PA, Wong Y-S (1984) Formation of Mg-containing chlorophyll precursors from protoporphyrin IX, δ-aminolevulinic acid, and glutamate in isolated, photosynthetically competent, developing chloroplasts. Plant Physiol 74:928–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner R, Peters P, Peyton B, Cooksey K (2011) Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the Chlorophyta. J Appl Phycol 26:1005–1016

    Article  Google Scholar 

  • Giordano M, Kansiz M, Heraud P, Beardall J, Wood B, McNaughton D (2001) Fourier transform infrared spectroscopy as a novel tool investigate changes in intracellular macromolecular pools in the marine microalga Chaetoceros muellerii (Bacillariophyceae). J Phycol 37:271–279

    Article  CAS  Google Scholar 

  • Gordillo F, Goutx M, Figueroa F, Niell F (1998) Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis. J Appl Phycol 10:135–144

    Article  CAS  Google Scholar 

  • Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken ME, Elser JJ, Gruner DS, Hillebrand H, Shurin JB (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14:852–862

    Article  PubMed  Google Scholar 

  • Hill R, Ralph PJ (2008) Dark-induced reduction of the plastoquinone pool in zooxanthellae of scleractinian corals and implications for measurements of chlorophyll a fluorescence. Symbiosis 46:45

    CAS  Google Scholar 

  • Hofslagare O, Samuelsson G, Hallgren JE, Pejryd C, Sjoberg S (1985) A comparison between three methods of measuring photosynthetic uptake of inorganic carbon in algae. Photosynthetica 19:578–585

    CAS  Google Scholar 

  • Hofslagare O, Samuelsson G, Sjöberg S, Ingri N (1983) A precise potentiometric method for determination of algal activity in an open CO2 system. Plant Cell Environ 6:195–201

    Google Scholar 

  • Holm-Hansen O (1970) ATP levels in algal cells as influenced by environmental conditions. Plant and Cell Physiol 11:689–700

    CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Tanaka M, Shinkawa H, Nakada T, Ano Y, Kurano N, Soga T, Tomita M (2013) Metabolic and morphological changes of an oil accumulating trebouxiophycean alga in nitrogen-deficient conditions. Metabolomics 9:178–187

  • Kamalanathan M, Gleadow R, Beardall J (2015) Impact of phosphorous availability on lipid production by Chlamydomonas reinhardtii. Algal Res 12:191–196

  • Kilham S, Kreeger D, Goulden C, Lynn S (1997) Effects of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus. Freshwater Biol 38:591–596

    Article  CAS  Google Scholar 

  • Kim S-H, Liu K-H, Lee S-Y, Hong S-J, Cho B-K, Lee H, Lee C-G, Choi H-K (2013) Effects of light intensity and nitrogen starvation on glycerolipid, glycerophospholipid, and carotenoid composition in Dunaliella tertiolecta culture. PLoS One 8(9), e72415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolber Z, Zehr J, Falkowski P (1988) Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiol 88:923–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latasa M, Berdalet E (1994) Effect of nitrogen or phosphorus starvation on pigment composition of cultured Heterocapsa sp. J Plankton Res 16:83–94

    Article  Google Scholar 

  • Lavergne J, Trissl H-W (1995) Theory of fluorescence induction in photosystem II: derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units. Biophys J 68:2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Gao K, Beardall J (2012) Interactive effects of ocean acidification and nitrogen-limitation on the diatom Phaeodactylum tricornutum. PLoS One 7(12), e51590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan C (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol and Biotechnol 81:629–636

    Article  CAS  Google Scholar 

  • Masojídek J, Torzillo G, Kopecký J, Koblížek M, Nidiaci L, Komenda J, Lukavská A, Sacchi A (2000) Changes in chlorophyll fluorescence quenching and pigment composition in the green alga Chlorococcum sp. grown under nitrogen deficiency and salinity stress. J Appl Phycol 12:417–426

    Article  Google Scholar 

  • Masojídek J, Vonshak A, Torzillo G (2011) Chlorophyll fluorescence applications in microalgal mass cultures. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a flouresence in aquatic sciences: methods and application. Springer Dordrecht, The Netherlands, pp 277–292

  • Oh-hama T, Seto H, Otake N, Miyachi S (1982) 13C-NMR evidence for the pathway of chlorophyll biosynthesis in green algae. Biochem Biophys Res Commun 105:647–652

    Article  CAS  PubMed  Google Scholar 

  • Ördög V, Stirk W, Bálint P, van Staden J, Lovász C (2011) Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. J Appl Phycol 24:907–914

    Article  Google Scholar 

  • Perreault F, Ali NA, Saison C, Popovic R, Juneau P (2009) Dichromate effect on energy dissipation of photosystem II and photosystem I in Chlamydomonas reinhardtii. J Photochem Photobiol B 96:24–29

    Article  CAS  PubMed  Google Scholar 

  • Perry M, Talbot M, Alberte R (1981) Photoadaption in marine phytoplankton: response of the photosynthetic unit. Mar Biol 62:91–101

    Article  CAS  Google Scholar 

  • Petrou K, Hill R, Doblin MA, McMinn A, Johnson R, Wright SW, Ralph PJ (2011) Photoprotection of sea-ice microalgal communities from the east Antarctic park ice. J Phycol 47:77–86

    Article  PubMed  Google Scholar 

  • Petrou K, Kranz SA, Doblin MA, Ralph PJ (2012) Photophysiological responses of Fragilariopsis cylindrus (Bacillariophyceae) to nitrogen depletion at two temperatures. J Phycol 48:127–136

    Article  CAS  PubMed  Google Scholar 

  • Pierangelini M, Stojkovic S, Orr PT, Beardall J (2014) Photosynthetic characteristics of two Cylindrospermopsis raciborskii strains differing in their toxicity. J Phycol 50:292–302

    Article  CAS  PubMed  Google Scholar 

  • Pirastru L, Darwish M, Chu F, Perreault F, Sirois L, Sleno L, Popovic R (2012) Carotenoid production and change of photosynthetic functions in Scenedesmus sp. exposed to nitrogen limitation and acetate treatment. J Appl Phycol 24:117–124

    Article  CAS  Google Scholar 

  • Praveenkumar R, Shameera K, Mahalakshmi G, Akbarsha MA, Thajuddin N (2012) Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: evaluation for biodiesel production. Biomass Bioenerg 37:60–66

    Article  CAS  Google Scholar 

  • Richardson B, Orcutt DM, Schwertner HA, Martinez CL, Wickline HE (1969) Effects of nitrogen limitation on the growth and composition of unicellular algae in continuous culture. Appl Microbiol 18:245–250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richmond A (ed) (1986) Handbook of microalgae mass culture. CRC Press, Boca Raton, USA

  • Sagar AD, Briggs WR (1990) Effects of high light stress on carotenoid-deficient chloroplasts in Pisum sativum. Plant Physiol 94:1663–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kiefer DA, Legendre L, Morel A, Parslow J, Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J Plankton Res 19:1637–1670

    Article  CAS  Google Scholar 

  • Shaked Y, Xu Y, Leblanc K, Morel FM (2006) Zinc availability and alkaline phosphatase activity in Emiliania huxleyi: implications for Zn-P co-limitation in the ocean. Limnol Oceanogr 51:299–309

    Article  CAS  Google Scholar 

  • Siderius M, Musgrave A, Ende H, Koerten H, Cambier P, Meer P (1996) Chlamydomonas eugametos (Chlorophyta) stores phosphate in polyphosphate bodies together with calcium. J Phycol 32:402–409

    Article  CAS  Google Scholar 

  • Singh Y, Kumar HD (1992) Lipid and hydrocarbon production by Botryococcus sp. under nitrogen limitation and anaerobiosis. World Jf Microbiol Biotechnol 8:121–124

    Article  CAS  Google Scholar 

  • Solovchenko A, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak M (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251

    Article  CAS  Google Scholar 

  • Solovchenko A, Solovchenko O, Khozin-Goldberg I, Didi-Cohen S, Pal D, Cohen Z, Boussiba S (2013) Probing the effects of high-light stress on pigment and lipid metabolism in nitrogen-starving microalgae by measuring chlorophyll fluorescence transients: studies with a Δ5 desaturase mutant of Parietochloris incisa (Chlorophyta, Trebouxiophyceae). Algal Res 2:175–182

    Article  Google Scholar 

  • Stephenson A, Dennis J, Howe C, Scott S, Smith A (2010) Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1:47–58

    Article  CAS  Google Scholar 

  • Stirbet A (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol 104:236–257

    Article  CAS  Google Scholar 

  • Strasser R, Govindjee (1992) The Fo and the OJIP fluorescence rise in higher plants and algae. In. Argyroudi-Akoyunoglou JH (eds) Regulation of chloroplast biogenesis. Plenum Press, New York: pp 423–426

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Yunuf M, Pathre M, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. CRC Press: pp 445–483

  • Terry KL, Hirata J, Laws EA (1985) Light-, nitrogen-, and phosphorus-limited growth of Phaeodactylum tricornutum Bohlin strain TFX-1: chemical composition, carbon partitioning, and the diel periodicity of physiological processes. J Exp Mar Biol Ecol 86:85–100

    Article  CAS  Google Scholar 

  • Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb Tech 5:435–440

    Article  CAS  Google Scholar 

  • Trissl H-W (2003) Modeling the excitation energy capture in thylakoid membranes. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Springer, Dordrecht, pp 245–276

    Chapter  Google Scholar 

  • Uslu L, Isik O, Koç K, Göksan T (2011) The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. Afr J Biotech 10:386–389

    CAS  Google Scholar 

  • Vidhyavathi R, Venkatachalam L, Sarada R, Ravishankar GA (2008) Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J Exp Bot 59:1409–1418

    Article  CAS  PubMed  Google Scholar 

  • Wyatt KH, Stevenson R, Turetsky MR (2010) The importance of nutrient co-limitation in regulating algal community composition, productivity and algal-derived DOC in an oligotrophic marsh in interior Alaska. Freshwater Biol 55:1845–1860

    Article  CAS  Google Scholar 

  • Yeh KL, Chang JS (2011) Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Biotechnol J 6:1358–1366

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Pan X, Mu G, Wang J (2010) Toxic effects of antimony on photosystem II of Synechocystis sp. as probed by in vivo chlorophyll fluorescence. J Appl Phycol 22:479–488

    Article  Google Scholar 

  • Zhang YM, Chen H, He CL, Wang Q (2013) Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3. PLoS One 8(7), e69225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhila NO, Kalacheva GS, Volova TG (2005) Effect of nitrogen limitation on the growth and lipid composition of the green alga Botryococcus braunii Kutz IPPAS H-252. Russ J Plant Physiol 52:311–319

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kamalanathan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Average dry weight ± standard deviation for C. reinhardtii under control, with no phosphorus, with no nitrogen, and no nitrogen and phosphorus groups (n = 3). (GIF 41 kb)

High resolution image (TIFF 205 kb)

Supplementary Fig. 2

Average pH ± standard deviation for C. reinhardtii under control, with no phosphorus, with no nitrogen, and no nitrogen and phosphorus groups (n = 3). (GIF 22 kb)

High resolution image (TIFF 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamalanathan, M., Pierangelini, M., Shearman, L.A. et al. Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii . J Appl Phycol 28, 1509–1520 (2016). https://doi.org/10.1007/s10811-015-0726-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0726-y

Keywords

Navigation