Skip to main content
Log in

Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The carotenoid fucoxanthin found in the Phaeophyceae and Bacillariophyceae (diatoms) is an antioxidative agent used as a nutraceutical for humans. In algae, terpenoids (including carotenoids) are synthesized via the 1-deoxy-d-xylulose 5-phosphate synthase pathway. The gene dxs encoding a 1-deoxy-d-xylulose 5-phosphate synthase was identified in the genome of Phaeodactylum tricornutum and its complementary DNA (cDNA) cloned. Its function was demonstrated by an enhanced β-carotene synthesis due to expression in Escherichia coli transformants with an engineered carotenoid pathway. Dxs as the gateway enzyme of the terpenoid pathway and phytoene synthase controlling the initial step into the specific carotenoid pathway are transcriptionally up-regulated when dark-adapted P. tricornutum cultures were transferred to light. Because of their limiting properties, expression plasmids of dxs and psy cDNA for integration into the genome were constructed. After transformation, several transgenic lines of P. tricornutum with additional copies of integrated dxs or psy were obtained exhibiting higher carotenoid synthesis. The best dxs transformants reached 24.2 mg g−1 dry weight of the dominating carotenoid fucoxanthin, the best psy transformants 18.4 mg g−1 dry weight, which is a 2.4-fold and a 1.8-fold higher fucoxanthin content, respectively, than in the wild type. Our approach is the first example for a genetic manipulation of a chloroplast-specific pathway in P. tricornutum. With one psy transformant, we made a comparison of transcript with in situ phytoene synthesis. The results demonstrated that the transcript and product levels were correlated, but not in a linear manner. This is indicative of a further limitation in those engineered strains, most likely by substrate supply implying a combined over-expression of their gene as the next engineering step for a further increase of fucoxanthin production in P. tricornutum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipmann DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albrecht M, Misawa N, Sandmann G (1999) Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids ß-carotene and zeaxanthin. Biotechnol Lett 21:791–795

    Article  CAS  Google Scholar 

  • Apt K, Kroth-Pancic PG, Grossman AR (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 252:572–579

    CAS  PubMed  Google Scholar 

  • Bhasin M, Reinherz E, Reche PA (2006) Recognition and classification of histones using support vector machine. J Comput Biol 13:102–112

    Article  CAS  PubMed  Google Scholar 

  • Breitenbach J, Zhu C, Sandmann G (2001) Bleaching herbicide norflurazon inhibits phytoene desaturase by competition with the cofactors. J Agric Food Chem 49:5270–5272

    Article  CAS  PubMed  Google Scholar 

  • Coesel S, Oborník M, Varela J, Falciatore A, Bowler C (2008) Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. PLoS ONE 3, e2896

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordoba E, Porta H, Arroyo A, San Román C, Medina L, Rodríguez-Concepción M, León P (2011) Functional characterization of the three genes encoding 1-deoxy-D-xylulose 5-phosphate synthase in maize. J Exp Bot 62:2023–2038

    Article  CAS  PubMed  Google Scholar 

  • Dambeck M, Sandmann G (2014) Antioxidative activities of algal keto carotenoids acting as antioxidative protectants in the chloroplast. Photochem Photobiol 90:814–819

    CAS  PubMed  Google Scholar 

  • Dambeck M, Eilers U, Breitenbach J, Steiger S, Büchel C, Sandmann G (2012) Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum. J Exp Bot 63:5607–5612

    Article  Google Scholar 

  • Daboussi F, Leduc S, Maréchal A, Dubois G, Guyot V, Perez-Michaut C, Amato A, Falciatore A, Juillerat A, Beurdeley M, Voytas DF, Cavarec L, Duchateau P (2014) Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun 5:3831

    Article  CAS  PubMed  Google Scholar 

  • Estévez JM, Cantero A, Reindl A, Reichler S, León P (2001) 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276:22901–22909

    Article  PubMed  Google Scholar 

  • Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM, Grierson D (1995) Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J 8:693–701

    Article  CAS  Google Scholar 

  • Götz T, Sandmann G, Römer S (2002) Expression of a bacterial carotene hydroxylase gene (crtZ) enhances UV tolerance in tobacco. Plant Mol Biol 50:127–140

    Article  Google Scholar 

  • Goodwin TW (1980) The biochemistry of the carotenoids Vol. I Plants, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  • Hager A, Stransky H (1970) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xantophyllcyclus in verschiedenen Algenklassen. V. Einzelne Vertreter der Cryptophyceae, Euglenophyceae, Bacillariophyceae, Chrysophyceae und Phaeophyceae. Arch Microbiol 73:77–89

    CAS  Google Scholar 

  • Hamilton ML, Haslam RP, Napier JA, Sayanova O (2014) Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng 22:3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hempel F, Bullmann L, Lau J, Zauner S, Maier UG (2009) ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Mol Biol Evol 26:1781–1790

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Li Y, Li C, Fu Y, Cai F, Chen Q, Li D (2012) Combination of fucoxanthin and conjugated linoleic acid attenuates body weight gain and improves lipid metabolism in high-fat diet-induced obese rats. Arch Biochem Biophys 519:59–65

    Article  CAS  PubMed  Google Scholar 

  • Kajiwara S, Fraser PD, Kondo K, Misawa N (1997) Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem J 324:421–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudoh K, Kawano Y, Hotta S, Sekine M, Watanabe T, Ihara M (2014) Prerequisite for highly efficient isoprenoid production by cyanobacteria discovered through the over-expression of 1-deoxy-d-xylulose 5-phosphate synthase and carbon allocation analysis. J Biosci Bioeng. doi:10.1016/j.jbiosc.2013.12.018

    PubMed  Google Scholar 

  • Kumar SR, Hosokawa M, Miyashita K (2013) Fucoxanthin: a marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Mar Drugs 11:5130–5147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda H, Hosokawa M, Sashima T, Murakami-Funayama K, Miyashita K (2009) Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model. Mol Med Rep 2:897–902

    Article  CAS  PubMed  Google Scholar 

  • Mandel MA, Feldmann KA, Herrera-Estrella L, Rocha-Sosa M, León P (1996) CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J 9:649–658

    Article  CAS  PubMed  Google Scholar 

  • Misawa N, Satomi Y, Kondo K, Yokoyama A, Kajiwara S, Saito Ohtani T, Miki W (1995) Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 177:6575–6584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyashita K, Nishikawa S, Beppu F, Tsukui T, Abe M, Hosokawa M (2011) The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds. J Sci Food Agric 91:1166–1174

    Article  CAS  PubMed  Google Scholar 

  • Nymark M, Valle KC, Brembu T, Hancke K, Winge P, Andresen K, Johnsen G, Bones AM (2009) An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum. PLoS ONE 4, e7743

    Article  PubMed  PubMed Central  Google Scholar 

  • Owens TG, Wold ER (1986) Light-harvesting function in the diatom Phaeodactylum tricornutum. I. Isolation and characterization of pigment-protein complexes. Plant Physiol 80:732–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulsen N, Kröger N (2005) A new molecular tool for transgenic diatoms: control of mR NA and protein biosynthesis by an inducible promoter-terminator cassette. FEBS J 272:3413–3423

    Article  CAS  PubMed  Google Scholar 

  • Provasoli L, McLaughlin JJA, Droop MR (1957) The development of artificial media for marine algae. Arch Microbiol 25:392–428

    CAS  Google Scholar 

  • Ragni M, Ribera d’Alcala M (2007) Circadian variability in the photobiology of Phaeodactylum tricornutum: pigment content. J Plankton Res 29:141–156

    Article  CAS  Google Scholar 

  • Rodríguez-Villalón A, Gas E, Rodríguez-Concepción M (2009) Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings. Plant J 60:424–435

    Article  PubMed  Google Scholar 

  • Sachindra NM, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, Miyashita K (2007) Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem 55:8516–8522

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schäfer L, Sandmann M, Woitsch S, Sandmann G (2006) Coordinate up-regulation of carotenoid biosynthesis as a response to light stress in Synechococcus. Plant Cell Environ 26:1349–1356

    Article  Google Scholar 

  • Schöpf L, Mautz J, Sandmann G (2013) Multiple ketolases involved in light regulation of canthaxanthin biosynthesis in Nostoc punctiforme PCC 73102. Planta 237:1279–1285

    Article  PubMed  Google Scholar 

  • Simkin AJ, Zhu C, Kuntz M, Sandmann G (2003) Light–dark regulation of carotenoid biosynthesis in pepper (Capsicum annuum) leaves. J Plant Physiol 160:439–443

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9:1101–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    Article  CAS  PubMed  Google Scholar 

  • Wong DM, Franz AK (2013) A comparison of lipid storage in Phaeodactylum tricornutum and Tetraselmis suecica using laser scanning confocal microscopy. J Microbiol Methods 95:122–128

    Article  CAS  PubMed  Google Scholar 

  • Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE (2000) Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol 36:379–386

    Article  CAS  Google Scholar 

  • Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE (2002) Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292:2073–2075

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for funding through the EU FP7 GIAVAP project (grant number 266408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Sandmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 25 kb)

Supplementary Figure S1

Transformation plasmids for transformation and over-expression of the dxs (left) and psy (right) cDNAs in Phaeodactylum tricornutum, based on pPha-T1 and pPha-NR, respectively. (GIF 236 kb)

High resolution image

(TIFF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eilers, U., Bikoulis, A., Breitenbach, J. et al. Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum . J Appl Phycol 28, 123–129 (2016). https://doi.org/10.1007/s10811-015-0583-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0583-8

Keywords

Navigation