Skip to main content

Advertisement

Log in

Using marine macroalgae for carbon sequestration: a critical appraisal

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

There has been a good deal of interest in the potential of marine vegetation as a sink for anthropogenic C emissions (“Blue Carbon”). Marine primary producers contribute at least 50% of the world’s carbon fixation and may account for as much as 71% of all carbon storage. In this paper, we analyse the current rate of harvesting of both commercially grown and wild-grown macroalgae, as well as their capacity for photosynthetically driven CO2 assimilation and growth. We suggest that CO2 acquisition by marine macroalgae can represent a considerable sink for anthropogenic CO2 emissions and that harvesting and appropriate use of macroalgal primary production could play a significant role in C sequestration and amelioration of greenhouse gas emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atkinson MJ, Smith SV (1983) C:N:P ratios of benthic marine plants. Limnol Oceanogr 28:568–574

    Article  CAS  Google Scholar 

  • Barry JP, Baxter CH, Sagarin RD, Gilman SE SE (1995) Climate-related, long term faunal changes in a California rocky intertidal community. Science 267:672–675

    Article  PubMed  CAS  Google Scholar 

  • Beardall J, Raven JA (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43:26–40

    Article  Google Scholar 

  • Beardall J, Roberts S (1999) Inorganic carbon acquisition by two Antarctic macroalgae, Porphyra endiviifolium (Rhodophyta: Bangiales) and Palmaria decipiens (Rhodophyta: Palmariales). Polar Biol 21:310–315

    Article  Google Scholar 

  • Beardall J, Beer S, Raven JA (1998) Biodiversity of marine plants in an era of climate change: some predictions on the basis of physiological performance. Bot Mar 41:113–123

    Article  CAS  Google Scholar 

  • Behrenfeld MJ, Esaias WE, Turpie KR (2002) Assessment of primary production at the global scale. In: Williams PJ leB, Thomas DN, Reynolds CS (eds) Phytoplankton Productivity. Carbon assimilation in marine and freshwater ecosystems. Blackwell, Oxford, pp 156–186

    Google Scholar 

  • Bergman KC, Svensson S, Ohman MC (2001) Influence of algal farming on fish assemblages. Mar Pollut Bull 42:1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Breeman AM (1990) Expected effects of changing seawater temperatures on the geographic distribution of seaweed species. In: Beukema JJ, Wolff WJ, Brouns JJWM (eds) Expected effects of climate change on marine coastal ecosystems. Kluwer, pp 69–76

  • Brinkhuis BH (1977) Seasonal variations in salt-marsh macroalgae photosynthesis. I. Ascophyllum nodosum ecad scorpioides. Mar Biol 44:165–175

    Article  Google Scholar 

  • Brown DL, Tregunna EB (1967) Inhibition of respiration during photosynthesis by some algae. Can J Bot 45:1135–1143

    Article  Google Scholar 

  • Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-Gonzalez JA, Yarish C, Neefus C (2001) Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J Phycol 37:975–986

    Article  Google Scholar 

  • Critcheley AT, Ohno M. (1998) Seaweed resources of the world. Japan International Cooperation Agency. p 431

  • Dalgaard T, Jørgensen U, Olesen JE, Jensen ES, Kristensen ES, Connor D, Mínguez I, Deluca TH, Koonin SE (2006) Looking at biofuels and bioenergy. Science 312:1743–1744

    Article  PubMed  CAS  Google Scholar 

  • Davis SC, Anderson-Teixeira KJ, DeLucia EH (2009) Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14:140–146

    Article  PubMed  CAS  Google Scholar 

  • Dayton PK, Tegner MJ (1984) Catastrophic storms, El Niño, and patch stability in a Southern California kelp community. Science 224:283–285

    Article  PubMed  CAS  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Diaz-Pulido G, McCook LJ, Larkum AWD, Lotze HK, Raven JA, Schaffelke B, Smith JE, Steneck RS (2007) Vulnerability of macroalgae of the Great Barrier Reef to climate change. In: Marshall P, Johnson J (eds) Climate change and the Great Barrier Reef. Great Barrier Reef Marine Park Authority, Townsville, pp 153–192

    Google Scholar 

  • Dring MJ (1982) The biology of marine plants. Cambridge University Press

  • Einar R, Beer S (1993) Photosynthesis in air and in water of Acanthophora najadiformis growing within a narrow zone of the intertidal. Mar Biol 117:133–138

    Article  Google Scholar 

  • FAO (2003) Guide to the seaweed industry (A). FAO Fisheries Technical Paper No. 441 Rome, p 116

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    Article  PubMed  CAS  Google Scholar 

  • Fernandez C, Gutierrez LM, Rico JM (1990) Ecology of Sargassum muticum on the north coast of Spain. Preliminary observations. Bot Mar 33:423–428

    Article  Google Scholar 

  • Fleurence J, Gutbier G, Mabeau S, Leray C (1994) Fatty acids from 11 marine algae of the French Brittany coast. J Appl Phycol 6:527–532

    Article  CAS  Google Scholar 

  • Gao K, McKinley KR (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60

    Article  Google Scholar 

  • Gao K, Nakahara H (1990) Effects of nutrients on the photosynthesis of Sargassum thunbergia. Bot Mar 33:375–383

    Article  Google Scholar 

  • Gao K, Umezaki I (1989a) Comparative studies of photosynthesis in different parts of Sargassum thunbergii. Jpn J Phycol 37:7–16

    CAS  Google Scholar 

  • Gao K, Umezaki I (1989b) Studies on diurnal photosynthetic performance of Sargassum thunbergii I. Changes in photosynthesis under natural sunlight. Jpn J Phycol 37:89–98

    CAS  Google Scholar 

  • Gao K, Umezaki I (1989c) Studies on diurnal photosynthetic performance of Sargassum thunbergii II. Explanation of diurnal photosynthesis patterns from examinations in the laboratory. Jpn J Phycol 37:99–104

    CAS  Google Scholar 

  • Gao K, Zheng Y (2010) Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Global Change Biology 16:2388–2398

    Article  Google Scholar 

  • Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1991) Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. J Appl Phycol 3:355–362

    CAS  Google Scholar 

  • Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1993a) Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2. Mar Biol 117:129–132

    Article  CAS  Google Scholar 

  • Gao K, Aruga Y, Asada K, Kiyohara M (1993b) Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J Appl Phycol 5:563–571

    Article  CAS  Google Scholar 

  • Hanisak MD, Littler MM, Littler DS (1988) Significance of macroalgal polymorphism: intraspecific tests of the functional- form model. Mar Biol 99:157–165

    Article  Google Scholar 

  • Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biology 14:2000–2014

    Article  Google Scholar 

  • Herbert SK, Waaland JR (1988) Photoinhibition of photosynthesis in a sun and a shade species of the red algal genus Porphyra. Mar Biol 97:1–7

    Article  Google Scholar 

  • Israel A, Hophy M (2002) Growth, photosynthetic properties and Rubisco activities and amounts of marine macro algae grown under current and elevated seawater CO2 concentrations. Global Change Biology 8:831–840

    Article  Google Scholar 

  • Israel A, Katz S, Dubinsky Z, Merrill JE, Friedlander M (1999) Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhodophyta). J Appl Phycol 11:447–453

    Article  Google Scholar 

  • Jackson GA (1987) Modelling the growth and harvest yield of the giant kelp Macrocystis pyrifera. Mar Biol 95:611–624

    Article  Google Scholar 

  • Johnston AM, Maberly SC, Raven JA (1992) The acquisition of inorganic carbon by four red macroalgae from different habitats. Oecologia 92:317–326

    Article  Google Scholar 

  • Jordan N, Boody G, Broussard W, Glover JD, Keeney D, McCown BH, McIsaac G, Muller M, Murray H, Neal J, Pansing C, Turner RE, Warner K, Wyse D (2007) Sustainable development of the agricultural bio-economy. Science 316:1570–1571

    Article  PubMed  CAS  Google Scholar 

  • Koh LP (2007) Can palm oil plantations be made more hospitable for forest butterflies and birds? J Appl Ecol 44:703–713

    Article  Google Scholar 

  • Kremer BP (1981) Carbon metabolism. In: Lobban CS, Wynne MJ (eds) The biology of seaweeds. Botanical Monographs Vol. 17., pp 493–533

  • Lapointe BE (1986) Phosphorus-limited photosynthesis and growth of Sargassum natans and Sargassum fluitans (Phaeophyceae) in the western North Atlantic. Deep-Sea Res 33:391–399

    Article  CAS  Google Scholar 

  • Lapointe BE, Tenore KR (1981) Experimental outdoor studies with Ulva fasciata Delile. 1. Interaction of light and nitrogen on nutrient uptake, growth, and biochemical composition. J Exp Mar Biol Ecol 53:135–152

    Article  CAS  Google Scholar 

  • Leigh EG, Paine RT, Quinn JF, Suchanek TH (1987) Wave energy and intertidal productivity. Proc Natl Acad Sci USA 84:1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Levavasseur G, Edwards GE, Osmond CB, Ramus J (1991) Inorganic carbon limitation of photosynthesis in Ulva rotundata (Chlorophyta). J Phycol 27:667–672

    Article  Google Scholar 

  • Littler MN, Murray SN (1974) The primary productivity of marine macrophytes from a rocky intertidal community. Mar Biol 27:131–135

    Google Scholar 

  • Maegawa M (1980) Measurements of photosynthesis and productivity of the cultivated Monostroma population. La Mer 18:116–124

    Google Scholar 

  • Maegawa M, Aruga Y (1983) Photosynthesis and productivity of the cultivated Monostroma latissimum population. La Mer 21:164–172

    Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM,. Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB Tignor M, Miller HL (eds.) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Mercado JM, Javier F, Gordillo L, Figueroa FL, Niell FX (1998) External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae. J Exp Mar Biol Ecol 221:209–220

    Article  CAS  Google Scholar 

  • Middelboe AL, Hansen PJ (2007) Direct effects of pH and inorganic carbon on macroalgal photosynthesis and growth. Mar Biol Res 3:134–144

    Article  Google Scholar 

  • Moen E, Horn S, Østgaard K (1997) Biological degradation of Ascophyllum nodosum. J Appl Phycol 9: 347–357.

    Google Scholar 

  • Morand P, Carpentier B, Charlier RH, Maz’e J, Orlandini M, Plunkett BA, de Wart J (1991) Bioconversion of seaweeds. In: Guiry MD, Blunden G (eds) Seaweed resources of Europe: uses and potential. Wiley, Chichester, pp 95–148

    Google Scholar 

  • Muraoka D (2004) Seaweed resources as a source of carbon fixation. Bull Fish Res Agen Supplement 1:59–63

    Google Scholar 

  • Nellemann C, Corcoran E, Duarte CM, Valdés L, De Young C, Fonseca L, Grimsditch G (2009) Blue carbon. A rapid response assessment. United Nations Environment Programme, GRID-Arendal, www.grida.no

  • Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Halling C, Shpigel M, Yarish C (2004) Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231:361–391

    Article  Google Scholar 

  • Nielsen KJ (2003) Nutrient loading and consumers: agents of change in open-coast macrophyte assemblages. Proc Natl Acad Sci USA 13:7660–7665

    Article  Google Scholar 

  • Pakker H, Breeman AM (1996) Temperature responses of tropical to warm temperate seaweeds. II Evidence for ecotypic differentiation in amphi-Atlantic tropical-Mediterranean species. Eur J Phycol 31:133–141

    Article  Google Scholar 

  • Pakker H, Breeman AM, Prud’homme van Reine WF, van den Hoek C (1996) Temperature responses of tropical to warm temperate seaweeds. I. Absence of ecotypic differentiation in amphi-Atlantic tropical-Canary Islands species. Eur J Phycol 31:123–132

    Article  Google Scholar 

  • Petrus L, Noordermeer M (2006) Biomass to biofuels, a chemical perspective. Green Chem 8:861–867

    Article  CAS  Google Scholar 

  • Raven JA, Osmond CB (1992) Inorganic carbon assimilation processes and their ecological significance in inter- and sub-tidal macroalgae of North Carolina. Funct Ecol 6:41–47

    Article  Google Scholar 

  • Raven JA, Beardall J, Roberts S (1989) The ecophysiology of inorganic carbon assimilation by Durvillaea potatorum (Durvillaeales, Phaeophyta). Phycologia 28:429–437

    Article  Google Scholar 

  • Renaud SM, Luong-Van JT (2006) Seasonal variation in the chemical composition of tropical Australia marine macroalgae. J Appl Phycol 18:381–387

    Article  CAS  Google Scholar 

  • Righelato R, Spracklen DV (2007) Carbon mitigation by biofuels or by saving and restoring forests? Science 317:902

    Article  PubMed  CAS  Google Scholar 

  • Ritschard RL (1992) Marine algae as a CO2 sink. Water Air Soil Pollut 64:289–303

    Article  CAS  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  PubMed  CAS  Google Scholar 

  • Sahoo D, Yarish C (2005) Mariculture of seaweeds. In: Anderson RA (ed.) Algal culturing techniques. Elsevier, pp 219–237

  • Sawyer D (2008) Climate change, biofuels and eco-social impacts in the Brazilian Amazon and Cerrado Phil Trans Royal Soc B 363:1747–1752

    Google Scholar 

  • Schaffelke B (1999) Short term nutrient pulses as tools to assess responses of coral reef macroalgae to enhanced nutrient availability. Mar Ecol Prog Ser 182:305–310

    Article  CAS  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change science 319:1238–140

  • Seo Y-B, Lee Y-W, Lee C-H, You H-C (2010) Red algae and their use in papermaking. Bioresour Technol 101:2549–2553

    Article  PubMed  CAS  Google Scholar 

  • Shiel DR, Steinbeck JR, Foster MS (2004) Ten years of induced ocean warming causes comprehensive changes in marine benthic communities. Ecology 85:1833–1839

    Article  Google Scholar 

  • Sievannen L, Crawford B, Pollnac R, Lowe C (2005) Weeding through assumptions of livelihood approaches in ICM: seaweed farming in the Philippines and Indonesia. Ocean Coast Manage 48:297–313

    Article  Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600

    Article  PubMed  CAS  Google Scholar 

  • Titlyanov EA, Yakovleva IM, Titlyanova TV (2007) Interaction between benthic algae (Lyngbya bouillonii, Dictyota dichotoma) and scleractinian coral Porites lutea in direct contact. J Exp Mar Biol Ecol 342:282–291

    Article  Google Scholar 

  • Yokohama Y (1973) A comparative study on photosynthesis temperature relationships and their seasonal changes in marine benthic algae. Int Rev Gesamten Hydrobiol 58:463–472

    Article  Google Scholar 

  • Zemke-White L, Ohno M (1999) World seaweed utilization: an end of century summary. J Appl Phycol 11:369–376

    Article  Google Scholar 

Download references

Acknowledgments

This review is the first activity of the WG-Asian Network of the Asian Pacific Phycological Association and has been supported by a grant ‘Greenhouse Gas Emissions Reduction Using Seaweeds’ Project funded by the Korean Ministry of Land, Transport and Maritime Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ik Kyo Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, I.K., Beardall, J., Mehta, S. et al. Using marine macroalgae for carbon sequestration: a critical appraisal. J Appl Phycol 23, 877–886 (2011). https://doi.org/10.1007/s10811-010-9604-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-010-9604-9

Keywords

Navigation