Skip to main content

Advertisement

Log in

Evaluation of iodide and titanium halide redox couple combinations for common electrolyte redox flow cell systems

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behaviour of a range of halide and titanium halide redox couple combinations has been evaluated for potential application in redox flow cells employing common elements in both half-cells. Cyclic voltammetry and cell cycling measurements were employed to establish the reversibility of the redox couples and the expected cell voltage and performance in a redox flow cell. An all iodine cell was found to be impractical due to the formation of an insoluble iodine deposit in the cell that caused cell blockage. A titanium polyhalide cell that uses a solution of TiCl4 in HBr/HCl supporting electrolyte in both half-cells was, however, shown to produce an open circuit voltage of 0.9 V and high coulombic efficiencies. Although the voltage efficiency of the cell was low, improvements in cell design may reduce ohmic losses allowing much higher energy efficiencies to be achieved. This cell is equivalent to the vanadium bromide cell that employs a vanadium bromide solution in both half-cells. The lower price of titanium, however, opens the possibility of a significant cost benefit for the titanium polyhalide redox flow cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Skyllas-Kazacos M, Robins, R (1986) All-vanadium redox battery, US Pat. 4786567

  2. Skyllas-Kazacos M, Rychcik M, Robins R, Fane A, Green M (1986) J Electrochem Soc 133:1057

    Article  CAS  Google Scholar 

  3. Skyllas-Kazacos M, Grossmith F (1987) J Electrochem Soc 134:2950

    Article  CAS  Google Scholar 

  4. Rychcik M, Skyllas-Kazacos M (1988) J Power Sources 22:59

    Article  CAS  Google Scholar 

  5. Sum E, Skyllas-Kazacos M (1985) J Power Sources 15:179

    Article  CAS  Google Scholar 

  6. Sum E, Rychcik M, Skyllas-Kazacos M (1985) J Power Sources 16:85

    Article  CAS  Google Scholar 

  7. Zhong S, Skyllas-Kazacos M (1992) J Power Sources 39:1

    Article  CAS  Google Scholar 

  8. Skyllas-Kazaocs M, Rychcik M (1987) J Power Sources 19:45

    Article  Google Scholar 

  9. Kazacos M, Cheng M, Skyllas-Kazacos M (1990) J Appl Electrochem 20:463

    Article  CAS  Google Scholar 

  10. Skyllas-Kazacos M, Kasherman D, Hong R, Kazacos M (1991) J Power Sources 35:399

    Article  CAS  Google Scholar 

  11. Largent R, Skyllas-Kazacos M, Chieng J (1993) Proceedings IEEE, 23rd photovoltaic specialists conference. Louisville, Kentucky

    Google Scholar 

  12. Menictas C, Hong D, Yan Z, Wilson J, Kazacos M, Skyllas-Kazacos M (1994) Proceedings, Electrical Engineering Congress. Sydney, NSW

  13. Skyllas-Kazacos M, Menictas C, Kazacos M (1996) J Electrochem Soc 143:L86

    Article  CAS  Google Scholar 

  14. Skyllas-Kazacos M, Peng C, Cheng M (1999) Electrochem Solid State Lett 2:121

    Article  CAS  Google Scholar 

  15. Kausar N, Howe R, Skyllas-Kazacos M (2001) J. Appl Electrochem 31:1327

    Article  CAS  Google Scholar 

  16. Rahman F, Skyllas-Kazacos M (2009) J. Power Sources 189:1212

    Article  CAS  Google Scholar 

  17. Skyllas-Kazacos M, Kazacos G, Poon G, Verseema H (2010) Int J Energy Res (Energy storage special issue) 34:182

  18. Skyllas-Kazacos M (2003) J. Power Sources 24:299

    Article  Google Scholar 

  19. Hagedorn N, Thaller L (1980) NASA Report Number: DOE/NASA/1002-80/5, E-383, NASA-TM-81464

  20. Giner J, Cahill K (1980) NASA Report Number: DOE/NASA/0794-80/1, NASA-CR-159738

  21. Wills R, Collins J, Stratton-Campbell D, Low C, Pletcher D, Walsh F (2010) J Appl Electrochem 40:955

    Article  CAS  Google Scholar 

  22. Singh P, Jonshagen B (1991) J. Power Sources 35:405

    Article  CAS  Google Scholar 

  23. Bartolozzi M (1989) J. Power Sources 27:219

    Article  CAS  Google Scholar 

  24. Aylward G, Findlay T (1998) SI chemical data, 4th edn. Wiley, Australia

    Google Scholar 

  25. Mironov V, Lastovkina N (1967) Russ J Phys Chem 8:991

    Google Scholar 

  26. Bard A (1973) The encyclopaedia of the electrochemistry of the elements. Marcel Dekker Inc, New York

    Google Scholar 

  27. Nicholls D (1974) Complexes and first row transition elements. MacMillan Press, London

    Google Scholar 

  28. Wang Y, Lin M, Wan C (1984) J. Power Sources 13:65

    Article  CAS  Google Scholar 

  29. Pecsok R (1951) J Am Chem Soc 73:1304

    Article  CAS  Google Scholar 

  30. Zolotukhin V, Gnatyshin O (1973) Russ J Inorg Chem 18:1467

    Google Scholar 

  31. Swathirajan S, Bruckenstein S (1980) J Electrochem Soc 112:25

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Skyllas-Kazacos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skyllas-Kazacos, M., Milne, N. Evaluation of iodide and titanium halide redox couple combinations for common electrolyte redox flow cell systems. J Appl Electrochem 41, 1233–1243 (2011). https://doi.org/10.1007/s10800-011-0287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0287-y

Keywords

Navigation