Skip to main content
Log in

Teaching Across Subject Boundaries in STEM: Continuities in Beliefs about Learning and Teaching

  • Published:
International Journal of Science and Mathematics Education Aims and scope Submit manuscript

Abstract

This study explored the teaching and learning beliefs of qualified (in-field) secondary science teachers who were teaching mathematics out-of-field that is, without qualification. The relationship between secondary teachers’ beliefs about their in-field subject—science and their out-of-field subject—mathematics was examined. The theory of boundary crossing and frameworks of beliefs about science and mathematics teaching and learning were used to explore continuities of beliefs when crossing disciplinary boundaries to teach mathematics out-of-field. Individual semi-structured interviews and video-stimulated interviews were used to collect data about teachers’ beliefs and teaching practice for science and mathematics. Continuity of beliefs across science and mathematics was more likely when teachers held traditional beliefs about science. Continuity of non-traditional beliefs about learning and teaching science and mathematics was less likely, though some teachers did show evidence of beginning to adopt, or exhibit a desire to learn more about, constructivist approaches to teaching mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. This project was funded through an Australian Research Council Discovery Project grant (DP150102089).

  2. This program employed high achieving graduates as associate teachers for 2 years with a 0.8 EFT workload whilst they completed their teacher education qualification over the 2 years.

  3. TI 30 stands for Individual Teacher Interview, paragraph 30.

  4. VSI stands for video-stimulated interview about a lesson.

References

  • Adamson, F., & Darling-Hammond, L. (2012). Funding disparities and the inequitable distribution of teachers: Evaluating sources and solutions. Education Policy Analysis Archives, 20(37). Retrieved August, 2018 from http://epaa.asu.edu/ojs/article/view/1053.

  • Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Akkerman, S. F., & Bakker, A. (2011). Boundary crossing and boundary objects. Review of Educational Research., 8(2), 132–169. https://doi.org/10.3102/0034654311404435.

    Article  Google Scholar 

  • Attard, C. (2013). “If I had to pick any subject, it wouldn’t be maths”: Foundations for engagement with mathematics during the middle years. Mathematics Education Research Journal, 25, 569–587. https://doi.org/10.1007/s13394-013-0081-8.

    Article  Google Scholar 

  • Australian Institute for Teaching and School Leadership. (2015). Accreditation of initial teacher education programs in Australia: Standards and procedures. Melbourne, Australia: Education Services Australia.

  • Beswick, K. (2005). The beliefs/practice connection in broadly defined contexts. Mathematics Education Research Journal, 17(2), 39–68.

    Article  Google Scholar 

  • Beswick, K. (2007). Teachers’ beliefs that matter in secondary classrooms. Educational Studies in Mathematics, 65, 95–120. https://doi.org/10.1007/s10649-006-9035-3.

    Article  Google Scholar 

  • Beswick, K. (2012). Teachers’ beliefs about school mathematics and mathematicians’ mathematics and their relationship to practice. Educational Studies in Mathematics, 79(1), 127–147. https://doi.org/10.1007/s10649-011-9333-2.

    Article  Google Scholar 

  • Buzeika, A. (1996). Teachers’ beliefs and practice: The chicken or the egg? In P. C. Clarkson (Ed.), MERGA 19. Technology in mathematics education. (Proceedings of the 19th annual conference of the Mathematics Education Research Group of Australasia) (pp. 93–100). Melbourne, Australia: MERGA.

  • Charalambous, C. Y. (2015). Working at the intersection of teacher knowledge, teacher beliefs, and teaching practice: A multiple-case study. Journal of Mathematics Teacher Education, 18, 427–445. https://doi.org/10.1007/s10857-015-9318-7.

    Article  Google Scholar 

  • Clarke, D. Keitel, C. & Shimizu, Y. (2006). Mathematics classrooms in 12 countries: The Insider’s Perspective (LPS Series Volume 1). Rotterdam, Netherlands: SENSE publishers.

  • Clarke, D. J., Goos, M., & Morony, W. (2007). Problem solving and working mathematically: An Australian perspective. ZDM: Mathematics Education, 39(5–6), 475–490. https://doi.org/10.1007/s11858-007-0045-0.

    Article  Google Scholar 

  • Cross, D. (2009). Alignment, cohesion, and change: Examining mathematics teachers’ belief structures and their influence on instructional practices. Journal of Mathematics Teacher Education, 12, 325–346. https://doi.org/10.1007/s10857-009-9120-5.

    Article  Google Scholar 

  • Ernest, P. (1989). The impact of beliefs on the teaching of mathematics. In P. Ernest (Ed.), Mathematics teaching: The state of the art (pp. 249–253). New York, NY: Fahner.

  • Flynn, M., Pillay, H. & Waters, J. (2015). Boundary crossing – A theoretical framework to understand the operational dynamics of industry-school partnerships. In: TVET@Asia, issue 5, 1–17. Retrieved August, 2018 from http://www.tvet-online.asia/issue5/flynn_etal_tvet5.pdf.

  • Green, T. (1971). The activities of teaching. New York, NY: McGraw-Hill.

  • Grootenboer, P. (2008). Mathematical belief change in prospective primary teachers. Journal of Mathematics Teacher Education, 11, 479–497. https://doi.org/10.1007/s10857-008-9084-x.

    Article  Google Scholar 

  • Hancock, E. S., & Gallard, A. J. (2017). Preservice science teachers’ beliefs about teaching and learning: The influence of K-12 field experiences. Journal of Science Teacher Education, 15(4), 281–291. https://doi.org/10.1023/B:JSTE.0000048331.17407.f5.

    Article  Google Scholar 

  • Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65–92). New York, NY: Macmillan.

  • Hobbs, L. (2013). Teaching ‘out-of-field’ as a boundary-crossing event: Factors shaping teacher identity. International Journal of Science and Mathematics Education, 11(2), 271–297. https://doi.org/10.1007/s10763-012-9333-4.

    Article  Google Scholar 

  • Kang, N.-H., & Wallace, C. S. (2005). Secondary science teachers’ use of laboratory activities: Linking epistemological beliefs, goals, and practices. Science Education, 89, 140–165. https://doi.org/10.1002/sce.20013.

    Article  Google Scholar 

  • Kim, M., Lavonen, J., Juuti, K., Holborrk, J., & Rannikmae, M. (2013). Teacher’s reflection of inquiry teaching in Finland before and during an in-service program: Examination by a progress model of collaborative reflection. International Journal of Science and Mathematics Education, 11, 359–383. https://doi.org/10.1007/s10763-012-9341-4.

    Article  Google Scholar 

  • Lee, N. H. (2015). 21st Century Competencies & Singapore Mathematics Curriculum. In Keynote address AME-SMS conference 2015. Retrieved August, 2018 from http://math.nie.edu.sg/ame/amesms15/Keynote.aspx.

  • Luft, J. A., Roehrig, G. H., & Patterson, N. C. (2003). Contrasting landscapes: A comparison of the impact of different induction programs on beginning secondary science teachers’ practices, beliefs, and experiences. Journal of Research in Science Teaching, 40, 77–97. https://doi.org/10.1002/tea.10061.

    Article  Google Scholar 

  • Marshall, J. C., Horton, R., Igo, B. L., & Switzer, D. B. (2009). K-12 science and mathematics teachers’ beliefs about and use of inquiry in the classroom. International Journal of Science and Mathematics Education, 7, 575–596. https://doi.org/10.1007/s10763-007-9122-7.

    Article  Google Scholar 

  • McMillan, J. (2004). Educational research: Fundamentals for the consumer (4th ed.). Boston, MA: Pearson.

  • Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016). TIMSS 2015 International results in mathematics. Boston College, TIMSS & PIRLS International Study Center. Retrieved August, 2018 from http://timssandpirls.bc.edu/timss2015/international-results.

  • Rokeach, M. (1968). Beliefs, attitudes and values: A theory of organisational change. San Francisco, CA: Jossey-Bass.

  • Schulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1–21.

    Article  Google Scholar 

  • Suchman, L. (1994). Working relations of technology production and use. Computer Supported Cooperative Work, 2, 21–39.

    Article  Google Scholar 

  • Skemp, R. (1987). The psychology of learning mathematics. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Timms, M., Moyle, K., Weldon, P., & Mitchell, P. (2018). Challenges in STEM learning in Australian Schools. Policy Insights, Issue 7. Australian Council for Educational Research, Camberwell, Victoria. Retrieved August, 2018 from https://research.acer.edu.au/policyinsights/7/

  • Tsai, C.-C. (2002). Nested epistemologies: Science teachers' beliefs of teaching, learning and science. International Journal of Science Education, 24(8), 771–783. https://doi.org/10.1080/09500690110049132.

    Article  Google Scholar 

  • UNESCO Institute for Statistics. (2016). The world needs almost 69 million new teachers to reach the 2030 Education Goals. UIS Fact Sheet No.39 October 2016. Retrieved August, 2018 from http://uis.unesco.org/sites/default/files/documents/fs39-the-world-needs-almost-69-million-new-teachers-to-reach-the-2030-education-goals-2016-en.pdf.

  • Vale, C. (2010). Supporting out-of-field teachers of secondary mathematics. Australian Mathematics Teacher, 66(1), 17-24.

  • Vale, C., McAndrew, A., & Krishnan, S. (2011). Connecting with the horizon: Developing teachers’ appreciation of mathematical structure. Journal of Mathematics Teacher Education, 14(3), 193–212.

  • Van Zoest, L. R., Jones, G. A., & Thornton, C. A. (1994). Beliefs about mathematics teaching held by pre-service teachers involved in a first grade mentorship program. Mathematics Education Research Journal, 6(1), 37–55.

    Article  Google Scholar 

  • Venkat, H., & Winte, M. (2015). Boundary objects and boundary crossing for numeracy teaching. ZDM: Mathematics Education, 47, 577–586. https://doi.org/10.1007/s11858-015-0683-6.

    Article  Google Scholar 

  • Vygotsky, L.S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Chapter  Google Scholar 

  • Wallace, C. S., & Kang, N.-H. (2004). An investigation of experienced secondary science teachers’ beliefs about inquiry: An examination of competing belief sets. Journal of Research in Science Teaching, 41, 936–960. https://doi.org/10.1002/tea.20032.

    Article  Google Scholar 

  • Weldon, P. (2016). Out-of-field teaching in secondary schools. Policy Insights, Issue 6. Australian Council for Educational Research, Camberwell, Victoria. Retrieved August, 2018 from https://research.acer.edu.au/policyinsights/6/

  • Williams, J., & Berry, A. (2016). Boundary crossing and the professional learning of teacher educators in new international contexts. Studying Teacher Education, 12(2), 135–151. https://doi.org/10.1080/17425964.2016.1192031.

    Article  Google Scholar 

  • Wong, S. S., & Luft, J. A. (2015). Secondary science teachers’ beliefs and persistence: A longitudinal mixed-methods study. Journal of Science Teacher Education, 26(7), 619–645. https://doi.org/10.1007/s10972-015-9441-4.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge fellow researchers: Ass. Prof. Linda Hobbs (lead investigator, Deakin University), Dr. Frances Quinn (University of New England), Ass. Prof. Terry Lyons (Queensland University of Technology) and Prof. Russell Tytler (Deakin University).

Funding

The findings reported in this article arise from a Discovery Grant funded by the Australian Research Council: Out-of-field Teaching: Sustaining Quality Practices Across Subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen Vale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vale, C., Campbell, C., Speldewinde, C. et al. Teaching Across Subject Boundaries in STEM: Continuities in Beliefs about Learning and Teaching. Int J of Sci and Math Educ 18, 463–483 (2020). https://doi.org/10.1007/s10763-019-09983-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10763-019-09983-2

Keywords

Navigation